FRANCESCO AMATO (*)

On 2-codimensional co-isotropic submanifold with parallel complementary distribution in a neutral pseudo-riemannian manifold (**)

Introduction

Let $\tilde{M}(U, \tilde{\Omega}, \tilde{g})$ be a neutral pseudo-Riemannian manifold of dimension 2m, whose tensor fields $(U, \tilde{\Omega}, \tilde{g})$ are the para-complex operator [5], the canonical almost symplectic form and the para-Hermitian metric tensor.

In [1] we have studied some properties of 2-codimensional co-isotropic [7] submanifold M of \tilde{M} , and showed that M is always a CR-submanifold [2] whose vertical distribution D^{\perp} is self-orthogonal [7]. Denoting by CD^{\perp} , the self-orthogonal complementary distribution of D^{\perp} , we study, in the present paper, the case when CD^{\perp} is parallel in D, that is $\nabla CD^{\perp} \subset D^{\perp} \oplus CD^{\perp}$ (∇ : operator of covariant differentiation on M).

The following properties are proved:

- (i) The simple unit form φ which corresponds to $D_p^1(p \in M)$ is exterior recurrent and any vector field Z of the horizontal distribution D is a conformal infinitesimal transformation of φ .
- (ii) D is involutive and the leaves M_I of D are invariant submanifold of \tilde{M} , and such that the proper immersion $x: M_I \to \tilde{M}$ is pseudo-minimal (in the sense of R. Rosca [6]₁).
- $1 \operatorname{Let} \tilde{M}(U, \tilde{\Omega}, \tilde{g})$ be a neutral C^{∞} -pseudo-Riemannian manifold of dimension 2m. The structure tensor are, the para-complex operator U of P. Libermann [5], the para-Hermitian metric tensor \tilde{g} and the canonical almost symplectic 2-form $\tilde{\Omega}$, exchangeable with \tilde{g} .

^(*) Indirizzo: Dipartimento di Matematica, Via C. Battisti 90, 98100 Messina, Italy.

^(**) Ricevuto: 10-IX-1984.

In [1] we have studied some properties of the improper immersion $x: M \to \tilde{M}(U, \Omega, \tilde{g})$, where M is a 2-codimensional co-isotropic submanifold of \tilde{M} .

We have shoved that M is always a CR-submanifold of \tilde{M} , whose vertical distribution D^{\perp} is self-orthogonal [7].

If $T_{\tilde{p}}(\tilde{M})$ is the tangent space to \tilde{M} at $\forall \tilde{p} \in \tilde{M}$, then one has $T_{\tilde{p}}(\tilde{M})|_{M} = D_{p} \oplus D_{p}^{\perp} \oplus CD_{p}^{\perp}$, where D_{p} and CD_{p}^{\perp} are the horizontal distribution and the complementary self-orthogonal distribution of D_{p}^{\perp} at $\forall p \in M$ (we denote the induced elements by the mapping $x: M \to \tilde{M}$ by suppressing \sim).

Let $W = \{h_a, h_{a^*}; a = 1, ..., m; a^* = a + m\}$ be a local field of Witt vectorial basis. Since W is normed, one has $[\mathbf{6}]_2$

$$\langle h_a, h_{b^*} \rangle = \delta_{ab} .$$

The operator U defines an involutive automorphism on $\tilde{M}(U^2=+1)$ and one has

(1.2)
$$Uh_a = h_a \qquad Uh_{a^*} = -h_{a^*}.$$

If $W^* = \{\tilde{\omega}^A, A \in \{a, a^*\}\}$ is the cobasis of W and $\tilde{\omega}_B^A = \tilde{l}_{BC}^A \tilde{\omega}^C (\tilde{l}_{BC}^A \in C^\infty(\tilde{M}))$ the connection formes associated with W^* , then the line element $\mathrm{d}\tilde{p}$ ($\mathrm{d}\tilde{p}$ is a canonical vector 1-form on the tangent bundle $T(\tilde{M})$) and the connection equations are given by

(1.3)
$$d\tilde{p} = \tilde{\omega}^A \otimes h_A$$
 (1.4)
$$\tilde{\nabla} h_A = \tilde{\omega}_A^B \otimes h_B$$

 $(\tilde{\nabla}: \text{covariant differentiation operator on } \tilde{M})$ respectively.

If $\tilde{\Omega}^A_B$ are the curvature 2-forms on \tilde{M} , then the structure equations (E. Cartan) are expressed by

(1.5)
$$d\tilde{\omega}^A = \tilde{\omega}^B \wedge \tilde{\omega}_B^A \qquad (1.6) \qquad d\tilde{\omega}_B^A = \tilde{\Omega}_B^A + \tilde{\omega}_B^C \wedge \tilde{\omega}_C^A$$

(the connection $\tilde{\nabla}$ is torsion-less).

Further by (1.1) and (1.3) one has

(1.7)
$$\tilde{g} = \langle d\tilde{p}, d\tilde{p} \rangle = 2 \sum_{a} \tilde{\omega}^{a} \otimes \tilde{\omega}^{a^{*}}$$

and \tilde{g} is exchangeable with the almost symplectic form

(1.8)
$$\tilde{\Omega} = \sum_{a} \tilde{\omega}^{a} \wedge \tilde{\omega}^{a^{*}}.$$

Finally by (1.1) and (1.4) one finds $[6]_2$

$$\tilde{\omega}_{b}^{a} + \tilde{\omega}_{a^{*}}^{b^{*}} = 0 \qquad \tilde{\omega}_{b}^{a^{*}} + \tilde{\omega}_{a}^{b^{*}} = 0 \qquad \tilde{\omega}_{b^{*}}^{a} + \tilde{\omega}_{a^{*}}^{b} = 0 .$$

2 – Without loss of generality, a 2-codimensional co-isotopic submanifold M of \tilde{M} may be defined by [1]

$$\omega^{2m} = 0 \qquad \omega^{2m-1} = 0 .$$

In this case the line element dp of M is expressed by

(2.2)
$$dp = \omega^i \otimes h_i + \omega^{i*} \otimes h_{i*} + \omega^r \otimes h_r$$

where we agree with the following range of indices $i = 1, ..., m-2, i^* = i + m, r = m-1, n.$

Then according to [1] the vertical distribution D_p^{\perp} and its self-orthogonal complementary on CD_p^{\perp} are defined by $\{h_r\}$ and $\{h_{s^*}\}$ respectively.

We shall suppose in this paper that CD_p^{\perp} is parallel in D.

Then according to [3] the covariant derivative of any vector field of CD_p^{\perp} has no components in D. If ∇ is the restriction of $\tilde{\nabla}$ on M, one may write

$$(2.3) \nabla CD^{\perp} \subset D^{\perp} \oplus CD^{\perp}.$$

Since $CD^{\perp} = \{h_{s^*}\}$ one finds by (2.3) and (1.4)

$$\omega_i^r = 0 \qquad \omega_{i*}^r = 0 .$$

Denote now by

$$\varphi = \omega^{m-1} \wedge \omega_m$$

the *simple unit form* which corresponds to the vertical distribution D_p^{\perp} . Making use of (1.5) and (2.4) and taking the exterior derivative of φ one gets

(2.6)
$$d\varphi = -(\Sigma_r \omega_r^r) \wedge \varphi.$$

The above equation shows that φ is exterior recurrent [4] and has $-\Sigma_r \omega_r^r$ as recurrence 1-form.

Put $u = -\sum_r \omega_r^r$ and let Z be any vector field of D_p .

Since $i_Z \varphi = 0$ (i_Z : interior product by Z) one readly finds by (2.6) that the Lie derivative $(L_Z = d \circ i_Z + i_Z \circ d)$ in the direction Z is expressed by

$$(2.7) L_Z \varphi = u(Z) \varphi.$$

Hence any vector field $Z \in D_p$ is a conformal infinitesimal transformation of φ .

Further let $\forall Z, Z' \in D_v$. Then by (1.4) and (2.4) one readly finds

Hence the horizontal distribution D is *involutive*.

Denote by M_I the leaves of D and by $T_p(M_I)$ the tangent space to M_I at $\forall p \in M_I$.

Since $D_p = \{h_i, h_{i*}\} = T_p(M_I)$, one has $UT_p(M_I) = T_p(M_I)$ and M_I is an *invariant* [9] submanifold of \tilde{M} .

Next if Z and Z' are any tangent vector fields of M_I then the Gauss equation associated wits $x: M_I \to \tilde{M}(U, \tilde{\Omega}, \tilde{g})$ is as is known given by

$$\tilde{\nabla}_{Z'}Z = \tilde{\nabla}_{Z'}Z + B(Z, Z')$$

where B (the normal part of $\nabla_{Z'}Z$) is the second fundamental normal tensor of $M_{I'}$.

Putting g_I for the metric tensor of M_I , one has

$$(2.10) tr g_I B = (\dim M) H$$

where H is the mean curvature vector of M_I .

Referring to (1.7) and [6]₁ we have in the case under discussion

(2.11)
$$H = \frac{1}{2(m-2)} \Sigma_i B(h_i, h_{i*}) .$$

Now using (2.4), we get after a short calculation

(2.12)
$$H = \frac{1}{2(m-2)} \Sigma \left(l_{ii^*}^{r^*} + l_{i^*i}^{r^*} \right) h_{r^*}$$

and by (1.1) one gets instantly $\langle H, H \rangle = 0$.

Hence H is a null vector field and, so according to a definition of R. Rosca [6]₁, the submanifold M_I under consideration is *pseudo-minimal*.

Theorem. Let $x: M \to \bar{M}(U, \tilde{\Omega}, \tilde{g})$ be the improper immersion of a 2-codimensional co-isotropic submanifold M in a neutral pseudo-Riemannian manifold \bar{M} and let D, D^{\perp} and CD^{\perp} be the horizontal, the vertical and the complementary self-orthogonal distribution of D^{\perp} , respectively.

If CD^{\perp} is parallel in D, then one has the following properties:

- (i) The simple unit form φ which corresponds to $D_p^{\perp}(\forall p \in M)$ is exterior recurrent, and any vector field $Z \in D_p$ is a conformal infinitesimal transformation of φ .
- (ii) D is involutive and the leaves M_I of D are invariant submanifolds of \tilde{M} and such that the proper immersion $x: M_I \to \tilde{M}$ is pseudo-minimal.

References

- [1] F. AMATO, CR-sous-variétés co-isotropes incluses dans une C^{∞} -variété pseudo riemannienne neutre, Boll. Un. Mat. Ital. (6) 4-A (1985), 433-440.
- [2] A. Bejancu, CR-submanifold of a Kaehler manifold (I), Proc. Amer. Math. Soc. 69 (1978), 135-142.
- [3] B. Y. Chen, Geometry of submanifolds, M. Dekker, New York, 1973.
- [4] D. K. Datta, Exterior recurrent forms on a manifold, Tensor N. S. 36 (1982), 115-120.
- [5] P. LIBERMANN, Sur le problème d'équivalence de certaines structures infinitésimales, Ann. Mat. 36 (1954), 27-119.
- [6] R. Rosca: [•]₁ Sous-variétés pseudo-minimales et minimales d'une variété pseudo-riemannienne structurée par une connexion spin-euclidienne, C.R. Acad. Sc. Paris Sér. A 290 (1980), 331-333; [•]₂ Parakählerian manifolds carrying a pair of concurrent self-orthogonal vector fields, Abh. Math. Sem. Univ. Hamburg (1976), 207-217.
- [7] J. M. Souriau, Structures des systèmes dynamiques, Dunod, Paris, 1970.
- [8] K. Yano and M. Kon, Anti-invariant submanifolds, M. Dekker, New York, 1976.

Riassunto

Sia M una sottovarietà co-isotropa a 2 codimensioni di una varietà neutra $\tilde{M}(U, \tilde{\Omega}, \tilde{g})$ a 2m dimensioni. Si considerano su \tilde{M} tre distribuzioni, e cioè: una distribuzione invariante D, una distribuzione isotropa D^{\perp} e la distribuzione isotropa CD^{\perp} complementare di D^{\perp} tale che in ogni punto \tilde{p} di \tilde{M} lo spazio tangente $T_{\tilde{p}}(\tilde{M})$ è definito da $D_{\tilde{p}} \oplus D_{\tilde{p}} \oplus CD_{\tilde{p}}$. Si suppone inoltre che CD^{\perp} sia parallelo in D, ossia $\nabla CD^{\perp} \subset D^{\perp} \oplus CD^{\perp}$, dove ∇ è l'operatore di differenziazione covariente su M. Dalle precedenti condizioni si deduce: (a) Ogni campo vettoriale $Z \in D$ definisce una trasformazione infinitesima conforme della forma semplice φ che corrisponde a D^{\perp} . (b) La CR-sottovarietà M è fogliettata e le foglie M_I di D sono pseudo-minimali.

* * *

