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FLORANGELA DAL FABBRO (¥)

Hélder regularity of solutions

of some degenerate-elliptic obstacle problems (%)

1 - Introduction

The Hblder continuity of solutions of variational inequalities arising from
obstacle problems is dealt with by a number of recent works, both in the elliptic
and in the parabolic case. Among these let us mention the papers by Biroli [1]
and by Caffarelli and Kinderlehrer [2]: their approach is based on potential
theory [5](Y).

Herewith, by using the same potential methods, we obtain a De Giorgi-Nash-
Moser result for the solutions of some variational inequalities, which arise from
obstacle problems and are related to a class of linear degenerate-elliptic
operators with discontinuous coefficients.

Boundary value problems for degenerate-elliptic operators have been studied
by many authors in the natural framework of weighted Sobolev spaces. The first
paper on this subject is due to Murthy and Stampacchia [8]. They extend to a
suitable class of the above mentioned operators the well known Holder
regularity results due to De Giorgi, Nash and Moser.

In a recent work [3] Fabes, Kenig and Serapioni choose their weights in the
Muckenhoupt class A,. They consider the corresponding class of degenerate-
elliptic operators and extend the usual Hélder regularity results to the solutions
of the Dirichlet problems related to these operators.

We also choose our weights out of the class Az and consider the
corresponding degenerate-elliptic operators. We prove that the solutions of the
obstacle problems associated to these operators are Holder continuous if the
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(**) Ricevuto: 20-1X-1988.
() More refined results in the elliptic ease were obtained by Frehse and Mosco who
also used some elements of potential theory [4].
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obstacle has the same property. Moreover their Hélder exponents are the
minimum between the Hélder exponents of the obstacle and of the solution of the
Dirichlet problem related to the same operator, the latter exponent being
obtained in [3].

1.1 - Notations

We let Q be a bounded, connected, open subset of R", with a «smooth»
boundary 8Q. More precisely we assume that Q is of class S [6], i.e. there exist
two numbers 0<s<1, ¢*>0 such that Va, € 9Q, Vo <p*

(1.1) |B.(v0) — (o, )] = | B.(ao)]

where B,(x) = {x € R |x — xo| <g}, (o, ) =2 B(x,) and || stands for the
n-dimensional Lebesgue measure of a subset of R".

In order to introduce the weighted Sobolev space framework in which we
shall set our obstacle problems, let us recall the definition of Muckenhoupt’'s Ag
weight class

Ay = {w: R"— [0, + ): ;}JeLfM(R"); ) >0 sit.

w(B.(%0)) (1w)(B.(2)

VB.(2,) = R”
@)=k Bl 1B

< c(w)}

where w(B.(xo)) = [llLxa,e ;1;(3,:(900)) =|| % lica.ceon-

We also recall that, by choosing weights w in A, the following inner products
are well defined on the weighted Hilbert spaces H'(Q;w) and respectively
Hy@;w) (3] :

(u\v)lll(();w) = ('L(f‘v)Lz(ﬂ;zv) + (gl‘ad ’Mlgl’ad 'v)(Lg(!);w))"
= [ u@)v@)w)de + [ gradu - gradvw(z) de

(u|v)m0; 0 = (grad u|grad v)gze, vy -

Now let a(x) = [aij(x)] (#,7=1,...,n) be an n X n symmetric, non negative
matrix defined on Q2 the elements of which a;: 2— R are measurable functions.
Then, if x(x), A(x): 2— [0, + ) denote respectively the minimum and maximum
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eigenvalues of a(z), we obtain
0 2@)|fP<al) - f<A(v)|Ef VieR" ae in 0.

We shall assume that A(x) < cx(@) a.e. in 2(¢c=1) and that » € A,. Therefore we
shall choose 2 as a weight factor and set w= 2. Owing to the condition

(1.2) —i—w(ar}if}gSa(x)Efs cw(@)|&? VieR" ae. inQ,
the second order, linear operator, in divergence form,
L =—9,(a;(x)8;-) = — div (a(x) grad -) ()

associated to the matrix a(x) is degenerate-elliptic.

We point out that Le % H{Q;w), H{Q;w) where H YQ;w)
= (HYQ;w))', since (a(x)w(x)) e (L=(Q))>* by (1.2). The latter statement can be
shown by considering the bilinear form related to L

ar: HYQ;w) X HQ; w)— R
(u, V)= ar(u, v) = gyau (L, V) g = | ay@) d;ud;vdw .

Owing to (1.2), a, is well-defined, continuous: Vu,ve HYQ;w)

|CLL(% 7’)| = "2“ % (L (@) u“Ha(Q; w)””l ]Hém; w &)

and coercive: Vve HyQ;w), ay(v,v)= (1/c)|vfie.m. The weighted Sobolev
space framework thus enables us to recover the usual properties of bilinear
forms needed in the variational approach.

1.2 - Problem setting and results

Let f=[f;] G=1,...,n) where f;: 2— R are measurable functions such that
|f]/we LAQ;w). It follows that divf=29;f;e H YQ;w), where we have set

- (®) Here and in the sequel 9; stands briefly for 8/dz; (i =1, ..., n). Moreover the usual
summation convention is understood whenever some indexes are repeated.

®) We set |-Hz=@y» = max {”—a'i];HL”(a)i Li=1..,n}.
w w
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Yo = HY(Q; w)

v — AV V) gl = ( ,f f@)-gradvda .
Let us consider an obstacle ¢ € L™(Q2); we associate to ¢ the convex set
K ={ve H{Q;w): v<¢ a.e. in Q)
and assume that K¥+# @. We could easily show that K” is a closed, convex set.
We study the obstacle problem
1.8) ap(u, v —u) Z gy — AV, — U po.wy YV EK?, ue K

It follows from the general theory of variational inequalities that problem (1.3)
has a unique solution % e K¥. We are going now to investigate the Holder
regularity of this solution. To this end let us recall the Holder continuity result
obtained in [3] for the solution of the Dirichlet problem

(1.4) a (U, v) = H“(Q;u‘)( = divf, U>H(1;(!2;w) Vv € Hy(Q; w), uo € Hy(Q;w) .

Theorem 1. Let uye HyQ;w) be the solution of (1.4). Assume that (1.1)
holds and (|f|/w) € LP(Q;w)), where p>2n—e. Then there exist two numbers
M>0, 0<y<1, which do not depend on uy but only on the fixed parameters in
the problem, such that uge C7(Q); moreover the following estimate holds:
Vo€ Q, Vo small enough

f
cu(c) = M“u ”U’(Q:w) .OT
v w
where w(g) = 0se (tg; Ao, o)) = sup uo — infau, %) .
g, =) Q(xg,2)

Our Hoélder regularity result for the solution of the obstacle problem (1.3) is
summarised by the following theorem.

(*) We define

gsiup)uo =inf{keR: uy<k on Q(x,¢) in the sense of H'Q;w)}
(0. 2.

inf g = — sup (—uo) ({31, [6D.

Ofxp, 2}
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Theorem 2. Assume that the same hypotheses as in Theorem 1 hold. Let
the obstacle ¢ satisfy ¢ € C*(Q) (0<x<1) and ¢|sp=0. Then the solution w of
(1.3) is in CHQ), where B=ady, i.e. 8 is the minimum between the Holder
exponents of the obstacle and of the solution of (1.4).

Remark 1. Theorem 2 can be proved, without loss of generality, in the
homogeneous case f=0.

In order to show this statement we notice that, if u € K¥ and u, e HyQ; w)
denote the solutions of problems (1.3) and respectively (1.4), then u* =4 — u, is
in K7 and solves the following homogeneous obstacle problem

(1.5) a(u* v—u*)=0 Yve K¥™%, y* e K9,
Now, if we assume that Theorem 2 holds in the case of the homogeneous problem
(1.5), we can state that the solution w* is in C*Y(Q), since ¢ —uye C*7(Q).

Hence we deduce that u =u*+ g is in C*(Q).

In order to carry out the proof of Theorem 2, where we set /=0, we need
some lemmas.

Lemma 1. Let e L*(Q(x, R)), g € H(Q(xy, R);w), where x,€Q and
K = {ve H(Q(xy, R);w): v — g € HYQ(xo, R);w), v< ¢ a.e. in Q(xy, R)}

a convex set such that Kj+# 0. Consider the following problem: find u e K such
that

(1.6) H~1(.;w)<L/LC, v — 'L(;)H})(.;w) =0 Yve Ké’ .

Then the mapping S:L*(Q2(xo, R)) 3+ S(L) =ue K} is well defined and s a
contraction on L=(Q(xy, R)) in the sense that

(1.7) ‘ S — S(S/JQ)HL’c <y - olle Vi, e € L™(Q(w,, R))
holds.

Lemma 2.  Assume that (1.1) holds. Let xy € 2 and let i e H*(Q(xo, R); w) be
a weak solution of Li=0 in Q(x, R), which vanishes on Q N Br(xy) in the

sense of H'(Q(x,, R); w) [3), [6]. Then, there exists a number 0 <y <1, which
does mot depend on % and xqeQ, such that the Jollowing relationship holds:
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Ve < gy small enough

(1.8) w(e) < nw(82) where w(c) = osc (it; Q(xy, ¢) -

Lemma 3. Let w: (0,ve0] 3> wle) € [0, + ) be an increasing function
which fulfils the following condition

1.9 wle) < nw(vp) + He” V0<ce=<g

where 0<4,<1, v>1, 0<a<l, H=0 are some fived parameters. Then, if
H =0, there exist 0<y <1, K>0 such that

(1.10) w(p) SKGY V0<9S90

more precisely y satisfies y < —logy/logy.
If H>0, there exist 0<g<1, K>0 such that

(1.11) wfe) < KCE V0 < o< min {¢, v}
~more precisely B satisfies §=ady, where y < —logy/logv.

Remark 2. This lemma will also enable us to obtain the relation-
ship between the Holder exponents of the solutions of problems (1.3) and
respectively (1.4) mentioned in Theorem 2.

2 — Proof of Lemma 1. We notice that the bilinear form related to L
a: HY(Q(wo, R); w) X HY(Q(x, R);w)— R

(w, )= a(u,v)= [ a;@)dud;vde
fHxg. RY

is continuous on H(-;w) X H'(-;w) and coercive on Hy(Q(xg, R); w) o Ky — K.
Therefore. the general theory of variational inequalities ensures that the
mapping S is well defined.

The relationship (1.7) can be proved via a penalization method analogous to
the one used by Mignot and Puel in Theorem 1.5 of [7]. To this end we need to
introduce the convex set

K 9={te H{(Q(xy, R);w): {<y—g a.e. in (Qxy, R)} .
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Then, if we let u=2+g, we get £e K*™9 and problem (1.6) transforms into the
equivalent one, to be solved in K¥~¢

=D Z pcw{— L9, L= E) ey Ve K¥9 FeKY0,

Proof of Lemma 2. This lemma is proved in Lemma 2.3.11 and in
Lemma 2.4.5 of [3]. It turns out from the proofs that eo must be chosen such that
8o < min {dist (xo, 3Q2), R}, if e Q; 80 <min{*, R}, where ¢% is defined by
(1.1) if g, € 30.

Proof of Lemma 3. This lemma is proved in Lemma 7.5 and in Lemma
7.6 of [9],. Nevertheless we shall write the proof extensively because it stresses
the relationships among the involved parameters.

Let us choose y such that 0<y<1 and rw<1; therefore y satisfies:
0<y<min {1, —logy/logv}. Let us also define B=uady; it follows that also 8
satisfies rv¥<1.

w(e).
-
.‘CH v

We obtain w(e)<Ke* Vo<o<: and hence w(v)< Kvie? Vo<,
Vi ~ v v

Then (1.9) implies w(c)< (Kov* + H) g* V‘—Zs o<alv, since *<¢* holds
in this interval. v

In order to prove (1.11) we set 3=min {¢o, v} and K= sup {

By repeating this procedure, we obtain in any interval

Ot

<
i+l

< i=1,2..
v

v

(8]

)e?,

-1
o) <[K(p?' +H 3 ()18 < (K + - H
s5=0

— v

since we have assumed 7v* < 1. )
Hence (1.11) follows, where K=K + H/(1—1v#). In the case H=0 we have
(1.10).

Proof of Theorem 2.  According to Remark 1, we carry out the proof in
the homogeneous case f= 0. Therefore we consider the problem: find « € K¥ such
that
@.1) a,v—u)=0 Voekt 4eC* @)  Ylan=0.

Let ,€Q and let @ e H(Q(xo, R);w) be the weak solution of the Dirichlet
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problem

il Lf, 9w =0 Vo e HYQwo, R); w), @ —wueHyQw,, B);w) .
We point out that, if xy € Q2 or R > dist (%, 32), then @ vanishes on 90 N Br(x)

in the sense of HY(Q(xy, R);w).
Now we try to estimate | — @|. =@, ry- To this end we notice that

s ry S % (52X, R)) + 0se (¢; (o, R))

< 4 (40, R)) + 2|l B
() — )|

e —a'r
denotes the average of ¢ over Q(xy, R), i.e.

where  |lc:@ = sup { w,x'eQ, x¥a’y  and  .Z (GQ, R)

1

< 4 Qwn, B) = 150

[ Yx)dw .

xg,R)

Therefore, as an application of the weak maximum principle (Theorem 2.2.2
in [3]), we get

a<d= 4 YOz, R)+ Y R*  ae. in Q@ R) .
It follows that 7% belongs to the convex set
Ki= {v € HXQ(o, R); w): v —u € HyQ(wo, R); w), v <¢ a.e. in Q(xy, R)}
and satisfies in K¥ the variational inequality
w0 — By =0 YveKhL aeki.
Now, by applying Lemma 1, we obtain the estimate
lle — L=y = IS@) — Sl ry < [l = Al 2

< 2 0sc (; (@, R)) < 4lllcxa R
and hence

(2.2) ose (u; Qxo, R)) < ose (1; (2o, R)) + 2l = Gllz=cws, Ry

< ose (1; (2o, R)) + 8lflcan R
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We stress that (2.2) holds in particular YR < R,, where we choose
By <dist (x,, 9Q) if xyeQ, Ry<g* with ¢* given by (1.1) if x,e 080 .

Let us recall at this point Lemma 2, where we take o = R/S. We obtain Vo< R/8
and VR <R,

2.3) 08¢ (u; (2, 0)) < 08¢ (14; 2@y, 2)) + 8|l R* (by (1.8)
< 7 08¢ (1; (%, 80)) + 8|[llc=a B* ' (by (2.2))
< ;08¢ (U; (%, 82)) + 8(n + 1) |[Yllc+a B* .

If we let ¢ = R/8 in (2.8), then we have VR < I

2.4) ose (u; Q(xy, %)) <7  osc(u;Qxy, R)+H (5;_)1 .

Therefore we are entitled to apply Lemma 8 and state that the solution # of the
obstacle problem (2.1) is in C#(Q), where 0 <g<1 is suitable.

From the inequalities (1.8) and (2.4), which characterise osc (@; Q(x, R)) and
osc (u; Q(xy, R)) respectively, we also obtain, via Lemma 3, the relationship
8= aly between the Holder exponent 8 of w and the Holder exponent y of any
solution 4@ of L4 =0 which either is of local type or vanishes on a part of 9Q.
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Sunto

Si considerano problemi con ostacolo associati ad una classe di operatort ellittici

degeneri con coefficienti discontinui. Si estende alle soluzioni di tali problemt il risultato
di holderianita ottenuto in [3] per le soluzioni dei problemi di Dirichlet associati alla
stessa classe dj operatort.

Si dimostra in particolare che gli esponenti di Holder delle soluziont det problemi con

ostacolo sono il minimo tra Pesponente di Holder dell’ostacolo e quello della soluzione del
corrispondente problema di Dirichlet.



