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Asymptotic equivalence of a linear and nonlinear system

with impulse effect (%)

1 - Introduction

The present paper deals with the problem of asymptotic equivalence of the
systems with impulse effect

o) %f —Av+g) t#t,  Au]e, = Bel)

dy ‘
@ G- Ay+gO+fty) t#t  Ayle, = By + bi(y(t)
where

¢, y:I-R" glI->R" fiIXR"-R" b:R'-R" [=[0, »),

R" is the n-dimensional Euclidean space with a norm |-|, A and B are constant
matrices, the moments {f;} constitute an increasing sequence

0<t1<...<tk<..., }n'rgt,‘:w

The systems with impulse effect of type (1) are characterized by the fact that
at the moments {f;} under the action of instant effect (impulse), the mapping
point (¢, %) jumps from the position (¢, #(¢;)) into the position (b, 2(ty) + Ax(t)).
It is also supposed that at the moments of impulse effect {t,} the solutions

(*) Indirizzo degli AA.: University of Plovdiv «Paisii Hilendarski», Plovdiv,
Bulgaria.
(**) Ricevuto: 10-VI-1983.
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of systems (1) and (2) are left continuous, ie. a(t—0)=a(t), Arvl,:,k
= 2(t;, + 0) — a(t,).
We shall make use of the following definition for asymptotic equivalence.

Def. 1. The systems (1) and (2) are said to be asymptotically equivalent if
there is a one-to-one correspondence between their solutions such that

@) lim [w(t) —y(®)] =0

for each two corresponding solutions x(t) and y(?).
The main theorem of this paper is an analog to the theorem of Brauer [1] for
asymptotic equivalence of systems without impulse effect.

2 - Preliminary remarks

Further on the following notations are used: (¢, s) the number of the points
t, inside the interval (t,s); ||A]l= sup |Az|-the norm of the matrix A = (ayi;
the unit % X n matrix; O,, the zero m X m matrix; diag (4;, 4,) the qua51d1agonal
n X 7 matrix with blocks A; and As.

In the proof of our main result we shall use the following

Lemma [2]. Let the following conditions be fulfilled:

1. The function u:I—1I is piecewise continuous on I being left continuous
at the points of discontinuity {f;}, 0<t;<...<f{<..., }LH} t, =,

2. The function i:I— R is continuous on I and the numbers d;,
k=0,1,..., are non-negative.

3. For tel the inequality

w®) <d, + f);(s) u(s)ds+ > dpulty)

o<t <t

holds.
Then for ¢el the following inequality takes place

uty<do I (A+dy)exp( f A(s)ds) .

to<tp<t
Denote by (A) the following group of conditions:
Al. Al solutions of system (1) are bounded on I.
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A2, Constants Q>0 and >0 exist such that
lilte, ) —pt — )| < Q for 0sty<t<oo,

A3. The function g¢:7— R" is continuous on I.

A4. det(F + B)+#0 and the matrices A and B commute.

A5. The inverse functions hi' of the functions hy:R"—R" hy(y)
=y+By+B(y), k=1,2, ..., exist.

- A6. The functions f.I X R"—R" and b:R"—R", k=1,2,..., are con-
tinuous on their domains and a non-negative continuous functions x:/—1 and
non-negative constants 8, k=1,2,... exist, such that

4) |£ (i < 2@yl for tel and ye R,

6) |ft, ) =&, < 2@y — 2| for tel and y,z€R",
(6 1) < Bely for yeR" k=1,2, ...,

(M 16x(y) — bi(2)] < Bily — 2| for y,zeR", k=1,2,...,

® JHs)ds+ 3 p<L<e.

3 - Main results

Theorem 1. Let the conditions (A) be fulfilled. Then the systems (1) and
(2) with impulse effect are asymptotically equivalent.

Proof. Let x(t) =2t 1, o) be a solution of (1) such that «(t, + 0) =x,, and
y(t) = y(t; ty, xp) a solution of (2) such that y(t;+0)=2x,.

We are going to show that for ¢, sufficiently large, there exists a one-to-one
correspondence between the initial states xy and yo which in turn generates a
one-to-one correspondence between the solutions x(t) and y(t) of systems (1) and
(2). Further on we shall demonstrate that for each two corresponding solutions
the relation (3) holds. '

The general solution X of the linear non-homogeneous system (1) has the
form

©) X=n+2Z
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where 7 is any solution of (1) and Z is the general solution of the linear
homogeneous system
dz _ : —
(10) E-Az, t#1t, Az|,=,, = Ba(ty) .
It follows from Al and (9) that all solutions of (10) are bounded. Since the
matrices A and B commute, then according to [2] the solution z(t) = z(¢; ty, ) of
(10) has the form z() = (F + B)%Pexp (A(t — 1) for t>1f or

(€8] 2(t) = (B + B) o 0-2t-0 expn (At — ) 2o for t>t,

where A=A +pn(E + B).

Having in mind the boundedness of the solution z(f) and condition AZ,
it follows trom (11) that the matrix exp (A(t — &) is bounded for 0 < ¢, <t < o,
Hence the matrix A has the structure A=S"'diag(A_,A,)S, where A_ is a
¢XxXq Jordan matrix whose eigenvalues J; have negative real parts
Rey<—a<0, i=1,...,q, 49 is a »Xr Jordan matrix whose eigenvalues
#; have zero real parts and simple elementary divisors, Re =0,
i=1,..,7 g+r=mn, detS+#0.

Introduce the matrix functions

12, Gts) = (E+B)et-rt=93-1 diag(exp(A_(t—s)),exp(dot—s))NS t>s,
1 ’ -
(E+B) 1t9+6=08 "1 djag(exp(A _(t—s)),exp(Aet— S t<s,
i(s,)~plt—8) Q-1 - —
(12 G_(t, )= (EF+B) 4 PE=98-1 diag(exp(A_(t—s)),0.)S t>s,
(E+B)~ =08 -1diag(exp(A_(t—5)),0,)S t<s,
(s, D) —p(t—s) Q—1 3 —
1) Gt s) = (E+B) | PEIST diag(0,, exp(Agt—s))S t>s,
(E+B)~19*6=08"1djag(0,, exp(Aot—s)))S i1<s.

An immediate verification shows that
(14) G, s)=G_(t,s)+ G(t, s), 15 GU,tH)=E for tel,

16) G +0,t)=FE 17 G@+0,s8)— G, s) =BG, s) for s<ti.,

(18) ia£=AU for t#t

where U is any of the matrices G, G or G,.
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Then the solution () of (1) is of the form

19 20 = Gl a0+ S G ) g ds

Using (15)-(18) we see that the solution y(f) of (2) satisfies for ¢ > iy the equation

@0 y@O=G, t)yo+ f G(t,s)g(s)ds+ f G, ) f(s,y(s)ds+ 3 G, t)biy(ty).

to<tp<t

Having in mind the structure of the matrix A, A2, (12) and (13), the following
estimates for the matrices G_, Gy and G can be obtained

@1 IG_¢t, )| <aexp(—alt—s) for O<s<t<w,
(22) |Go(t,9)|<a for tel, sel, @3) |G, 9)|<a for 0ss<t<o
where the constant ¢ >0 does not depend on s and .

The inequalities (4), (6), (21) and (23) together with (19), (20).yield the
estimate

(24) [y(®) — 2] < aly, — x| + fa)‘(s)[y(s)lds+ > aBly@)] .

tp<tp<t

Let c¢=sup |x()]. Then it follows from (23)
tel

(25) [y < ¢ + alyo — ao| + f axS)y)lds + 3 aBlyty)] .

fp<tp<t

Applying Lemma 1 to (25) one obtains

ly(®)] < (¢ + alyo — @) exp ( fa;(s)ds) n 1+ aBy)

< (c + alyo — x]) exp( fa)(s) ds + }3 In (1 + aBy)
< (c+aly, — xy)) exp (@ f)(s) ds + E Bi)

<(c+alyo— x| explal) < .

Therefore, each solution of (2) is bounded and in view of A3, A5 and A6 it is
defined on I. ,
It 5=yt yo) is a solution of (2), then similar arguments yield the



6 P. S. SIMEONOV and D. D. BAINOV [6]

estimate

(26) lyt) — GOl <Mlyo— Yol M =aexp(al).

It is easy to see that the following relations hold
@n Golt, ) = G(t, ty) Golto, $) for t>1t,, S>ty, t#ty, s#i,
(28) Go(t, 1) = GG, to)(E + By Gty &) for thel, k=1,2,...,

where w equals —1, 1 or 0 depending on the mutual deployment of £, #; and .
It follows from (22) that the matrix

(29) F(ty, t) = (B + B)* Go(to, tr)

can be estimated as

(30) IF o, tll <N

where the constant N >0 does not depend on ¢y and ¢;.
Introduce the mapping

@D Yo% %o =Yo= Yo+ S¥o)

where

(32) Si(yo) = fx Golto, $)f (s, y(s)ds + >, F(ty, t) bilyti)) .
to o<tk

Now from the boundedness of %(f), the estimates (23), (30) and from
conditions (4), (6) and (8) one is able to conclude that for each fixed t;, el the
mapping S (¥o) is defined for all y, e R™

Let 2y e R™ be fixed and consider the mapping

U, R'—R" Uiyo) = 10— Si,(yo) -

Using the conditions (5), (7) and the estimates (28), (30) and (26) we obtain

(33) U o) — Uil < abas)ds + NM 3 8lyo— T -

to<ty

It follows from (33) and (8) that for ¢, sufficiently large the mapping U, is
contractive and has a unique fixed point yo € R™, U, (yo) = ¥o, i.e. the mapping
(81) is one-to-one. Let us fix such a {.
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Since the solutions of (1) and (2) are uniquely determined by the initial
conditions wy and y,, then the mapping (31) generates a one-to-one
correspondence between the solutions x(t) = a(t; t,, 2,) and y(@) =yt &, y,) of
these systems.

Now (19), (20), (81), (14), (27)-(29) and (32) yield the following relation
between two corresponding solutions

y(@) —x(t) = fG & 8)f(s,ysNds+ 3 G_(t, £) blyty)

tg<tr <t

(34)
- fGo(t 8)f(s,y(s))ds + > G, 6 buly(®) .

tst

Let K =sup|y(#)]. Then, using (34), (21), (22), (4) and (6) one obtains the
estimate

ly(@®) — a(t)| < Ka( f( exp (— a(t — 8)) 2(s) ds
(35) ‘0
+ 2 exp(—alt— )8+ f As)ds+ 3 By -

to<tr<t tsiy

It follows from (8) that

(36) hm(f As)ds+ > By =

t<t

Let t>2t,. Then

(fexp(—~att=Eds+ 3 exp(—alt—t)5

] tp<tp<t

37)
<exp(—~—)(f 2(s)ds + Z/BLH— fA(s)ds+ S B .

H2<y

With (36) in mind the estimates (85) and (37) yield lim [y(t) — 2()| =
Thus, Theorem 1 is proved.

Remark 1. In the case when system (2) is linear (f(¢, y)—P(t)y,
b(y) =Py, P(t) and Py, k=1,2,..., are nxXn matrices) Theorem 1 remains
valid if A1-A4 hold and A5, A6 are replaced by

Ab5'. Det(E+B+Py)+0 k=1,2,....

A6'. The matrix function P(f) is continuous on I and

fIPOldt+ S [Pil<co
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Remark 2. The analysis of the proof of Theorem 1 shows that the
Lipschitz conditions (5) and (7) are used only when establishing the uniqueness
and continuity of the solutions of (2) as well as the existence of the inverse
mapping of (31). These conditions together with (8) restrict the application of
Theorem 1. If one omits the invertibility of the mapping (31), then the following
result takes place.

Theorem 2. Let the following conditions be fulfilled:
(1) The conditions Al-Ab hold.

Q) The functions f(t, ¥) and b(y) k=1, 2, ... are continuous on their
. domains and there exist a mon-negative continuous function i I-—I and
constants Br=0 k=1,2, ..., such that |f@y)|<r®ly| for tel and

yeR", by <Blyl for yeR", [rOdi+ 3 B <.
0 k=1
(8) The function f(t, x) is locally Lipschitzian in y in the domain I X R™.

Then for each solution y(@) of (2) there exists a solution x(t) of (1) such that
lim [y(2) — x(®)] = 0.
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Summary

Sufficient conditions are found for asymptotic equivalence of a linear system of
ordinary differential equations with impulse effect with the corresponding perturbed
nonlinear system.



