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Wave propagation in heat conducting dielectric solids
with thermal relaxation and temperature

dependent electric permittivity (**)

1 - Introduction

It is well-known that a physically unrealistic feature of the parabolic
Fourier’s law of heat conduction is that thermal pulses propagate at infinite
speed. So, in recent years, there has been considerable interest in thermo-
dynamic theories (in the framework of extended linear irreversible thermo-
dynamiecs, but also from a different point of view) accounting for a finite speed
of propagation [4], [6], [8], [12], [15], [16], [18],.

In particular, an alternative and efficient approach to incorporate relaxa-
tion phenomena in a thermodynamic theory is based on the notion of internal
variables: preecisely in [14] and in subsequent papers, the usefulness of this
tool has been demonstrated in order to allow wave propagation in heat con-
ducting viscous fluids and in [13] and references therein, the notion of electro-
magnetic hidden variables has been introduced to describe both elastic ferro-
electrics and ferromagnets.

The purpose of this work is to deliver a theory of wave propagation through
heat conducting dielectric solids with thermal relaxation within the context
of extended linear irreversible thermodynamics [9], [16].
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A new fundamental relation between the free enthalpy density ¢ and the
state variables is proposed: it is assumed that [, which in ordinary irreversible
thermodynamics depends at most on 0, F, H (respectively temperature and
electromagnetic fields), may, in non-equilibrium, also depend on the heat flux gq.
The model at hand is then specialized by a particular free enthalpy functional
so that the linear phenomenological law relating g to the temperature gra-
dient g is just the constitutive equation proposed by Cattaneo [2] and the
classical costitutive equations of an electromagnetic theory are derived in
the hypothesis (consistently with practical applications, [10]) that the die-
lectric coefficient ¢ is a positive funection of 0.

Throughout the paper, we deal with a system in which no electric relaxation
phenomena take place and further we suppose that the current density vector
& may be neglected in Maxwell’s equations.

In 2 the thermodynamic theory of the aforesaid model of heat conducting
dielectric is elaborated and the basic equations are set up.

In 3 we derive the propagation condition and we elucidate both the ef-
fects of the dependence of ¢ on § and the influence of thermal relaxation on
electromagnetic waves.

Besides the possibility of material surfaces with the characteristic speed
A = 0 which undergo at most jumps in the transverse component of the first
derivative of g, the theory accounts for two (real) transverse electromagnetic
waves and four coupled thermo-electromagnetic waves whose speeds are real
provided only that a certain constitutive condition is required. In 4 we exa-
mine symmetric and coupled waves: adopting the same terminology as in ma-
gnetofluiddynamics, the fast and slow waves are proven to exist. In 5 we
deal with the direct computation of the discontinuity parameters: the
electromagnetic waves are no accompanied by any jump in the first derivatives
of 6 (and also of q) and their (purely) electromagnetic properties are closely
analogous to the ones of the usual electromagnetic waves in dielectrics, where
heat conduction is ignored. Electromagnetic waves turn out to be excep-
tional {1],, [11].

Slow and fast wavefronts are then investigated: the discontinuity vector
associated with them is expressed in terms of the parameter characterizing
the jump in the first derivative of §. As it is expected, if we take either F; = 0
or ¢(0) = 0 ahead of the wave, the temperature field is uncoupled from the
electromagnetic one.

In the latter instance, the fast wave reduces to the usual electromagnetic
wave, whereas the slow one yields a temperature rate wave in rigid heat con-
ductor, whose speed is affected by the value of the longitudinal component
of g ahead of the wave [6], [15].

In 6 the growth of one-dimensional coupled waves enfering an equilibrium
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region is investigated using the Thomas technique [3], [19]: the amplitude
equation is of Bernoulli type, hence the possibility of shock formation is discus-
sed. It is worth noting that a more general model of electromagneto-thermo-
elasticity including both thermal relaxation and the electric current density
dependent also on g (according to a modified Ohm’s law) is presented in [17],
in the framework of the linearized equations: employing perturbation tech-
niques, the authors study the influence of small thermoelastic and magneto-
elastic couplings on the propagation of plane harmonic waves in unbounded
media.

Then a final comment on our results may be at order. In agreement with
a well-known general result [20], it is possible to verify that the propagation
condition giving all the values for the speed propagation of the wave fronts
(within the context of the non-linear basic equations) is identical with the
dispersion equation for plane harmonic waves of infinitesimal amplitudes at
very high frequencies (within the context of the linearized basic equations).

2 - General formulation and basic equations

Consider a heat conducting electromagnetic rigid body occupying a homo-
geneous compact region & of the three dimensional Fuclidean space. Let x
denote a typical point of # and ¢ e R+ is the time.

TFor simplicity, the electrical current density # and the external heat sup-
ply are assumed to be absent; we also ignore ferromagnetic bodies.

Thus, in our theory each thermodynamic process consists of a 9-tuples of
functions defined on % xR+, whose values have the following physical
interpretation: the electric intensity field E, the electric induction D, the
magnetic intensity field H, the magnetic induction B, the electric charge den-
sity Q, the internal specific energy (per unit volume) &, the specific entropy
(per unit volume) 7, the absolute temperature 0> 0 and the heat flux q.

Throughout this work, the notation is just the customary one in the cur-
rent literature.

When sufficient smoothness is assumed on the process, Maxwell’s equations
and the law of balance of energy (i.e. the first law of thermodynamics) take
respectively the forms [5], [7]

(2.1) VxH=D, V-D=¢,
(2.2) VXE=—B, V-B=0,
(2.3) é=_—-Vqgt+EDL+HB,

an upper dot standing for the partial time derivative.
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We assume the second law of thermodynamics to be expressed as
(2.4) i+ V- (q/f) = y>0,

i.e. the rate of production of entropy is non negative.
If we introduce the specific free enthalpy density ¢ = {(x, ¢) through

(2.5) {=&—0np—H-B—E-D,

then (2.3) and (2.4) yield the Clausius-Duhem inequality in the form

(2.6) —0C -+ 70 +B-H+DE) —qg=0%>0, whereg=Vy.

In order to account for relaxation phenomena associated with heat conduction,
as our constitutive assumptions we suppose that the material, at each point =,
is characterized by four response functionals £, 7, f), B giving the present val-
nes of {,n, D and B, whenever E, H §, g and g are known at (x, 1), i.e.

(2'7) C - E(E7 H’ 69 g) q) b 17 = ﬁ(E7 H7 07 g’ q) b ete’

This is in agreement with the point of view of the extended irreversible
thermodynamies [9] according to which the response functionals may, in non
equilibrium, also depend on quantities vanishing in equilibrium; in the present
theory the heat flux g behaves as an extra variable.

Hence, we say that our thermodynamic process in & XR* is admissible if
it is compatible with the field equations (2.1), (2.3) complemented by the
constitutive relations (2.7); the response functionals are required to satisfy
also the dissipation inequality (2.6). We investigate now the thermodynamic
restrictions imposed on the afore-mentioned constitutive scheme by (2.6).

By using standard compatibility arguments, it follows that the response
functionals £, 4, B and D depend on at most E, H, 0 and g and further that
the response functional { must Jecompletely determine %, B and D through
the relations [5]

(2.8) W:ﬁ(E’H79:Q):_§m B:_Eﬂ’ DZ_EE’

where, as usual, the subscripts 0, H ete. denote partial derivatives. In con-
sistence with the fact that phenomenological statements must be linear in the
(extra) wvariables vanishing in equilibrium, we henceforth suppose that
,= o(0)q, where «(0) is a phenomenological coefficient, e.g. see [9]. In view
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of this hypothesis, what remains of the inequality (2.6) can be written as

(2.9) — g (0e0) G + &)= 62y>0.

The requirement (2.9) is straightway satisfied if g is assumed to meet the
relation

(2.10) q = — y(a(0)0q + g),

2> 0 being the (constant) coefficient of heat conduction.

In order to specialize the model at hand, we now choose a free enthalpy
density function { dependent on 6 and on the quadratic invariants B2, H?,
and ¢® in the form

i1 & =8EH,0,q) = 0 — 5 (0B + pB¥) + 2 (10¢*,

where u > 0 is the constant magnetic permeability of the dielectric, £(6) > 0
plays the role of the dielectric coefficient and = > 0 is the (constant) thermal
relaxation time; (2.11) holds within a suitable range of temperatures. The
choice (2.11) provides the most direct extension of the classical thermoelectro-
magnetic theory.

In fact, substitution of (2.11) into (2.8), gives

3 1 7
(212)  n=—C}0) +5 ¢OF +2 0, B=pH, D=:0E,

whilst from (2.9) it easily follows the well-known Maxwell-Cattaneo consti-
tutive equation [2]

(2.13) tg=—q—8-

Precisely, when ¢ is independent of 0 and 7 is equal to zero, egs. (2;12)2’3 become
the usual linear equations of an electromagnetic theory, see e.g. [5], [7] and
(2.13) yields the Fourier’s constitutive equation. -

Consider now the internal energy &: on account of (2.5), (2.11) and (2.12),
it may be expressed as

o

(a4) E=G(E,H,0, q)=0*(0) — L(0)0+ 5 ((0)+ 0 O) B+ EH 4 o,
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whence the specific heat (per unit volume) which is defined by C = &,, will
depend on 0, E and ¢ in the form

(2.15) C = CA(E,’G, q) = Cx(0) + C(E, 0, q),
where
(2.16) Cx(B) = — 0255(0)

is the usual positive specific heat at equilibrium (where v = 0 and &'(6) = 0)
and

(2.17) Cx(E, 0, q) = 5 (¢"(0)0 + 2¢(0)) B*— —- ¢*

LD bt

is its non equilibrium value.

As it is customary in thermodynamic theories, we assume that the specifie
heat is positive, namely Cy+4 C,>C,> 0.

Under the condition

(2.18) Cr+ £(£"(0)0 + 26'(6)) B2 >0,

our requirement is clearly satisfied when a suitable bound for ¢ is introduced.
Look now at the balance equations (2.1)-(2.3) complemented by (2.13): on
appealing to the constitutive relations (2.12),, in view of the expression
(2.14) for &, a straightforward caleulation allows us to arrive at the system
of basic equations governing the model under consideration

(219, VxH=¢E+#0E, &V-E-{Eg=@,

(2.19), VXE=—H, V-H=0,

(219),  (Cu- &"072 — 7(30°)¢*)0 + £'0E-E + 27(40)q-q + V-g =0,
(2.19), Tg=—g— 18-

3 - Wave propagation in thermo-electromagnetic solids

In this section, we recall some well-known notions of the theory of non-
linear wave propagation.
Let X c #ZXR*+ be a singular surface propagating through the material, rep-
resented by an equation of the form ¢(x,t) = 0; n is the unit normal vector



[7] WAVE PROPAGATION IN HEAT CONDUCTING DIELECTRIC SOLIDS ... 449

to X (drawn in the direction of propagation) and 2 is the speed of propagation
of X given by the following formulae

(3.1) h=—o/|IVe|, n=VYp[g-

F is then said to be a thermo-electromagnetic rate wave if the quantities
E, H, 0 and g are continuous on % X R+, but their first and second derivatives
(with respect to space variables and time ¢) may suffer jump discontinuities
across X, while are continuous everywhere else on (% XR*)[.

On adopting the standard bracket notation [G] = G—— G* to define the
jump of an arbitary unknown field @ (for instance E) across the wave, where
G- and G+ are the values of @ immediately behind and ahead of X, respectively,
let us denote by 6f = [(0/Cp)f] the discontinuity parameter relative to f
which characterizes the jump of the first derivatives of f.

In what follows, we make use of the substitution [1],
(3.2) —gtf:> — 20f, Vxf-—nAdf, V-f=ndf, Vf=dfn

according as f is a scalar function (for instance 0) as a vectorial function.
Taking into account (3.2), system (2.19) easily provides the following character-
igtic equations

(3.3) AAOH = — &' A00E — eA6E, o084 & 00F, =0,
(3.4) RAOE = uA6H, OH,—0,

(3.5) (C— &' B2)2 60 + a'OAE-aE+%Aq-aq—aq,,:o,
(3.6) 7A0q = x00n,

where the subscript n denotes the normal component of an arbitrary vector,
i.e. 0E,= 6E-n etc.

Let us first note that an immediate consequence of the constraint V-H = 0
is 0H,= 0 (see (3.4),), namely JH is tangent to the wave front: this result
follows also from (3.4),, if A%0.

From (3.6), in the hypothesis A0, we have dq = dq,n (longitudinal
diseontinuity).

To begin with, we investigate whether material surfaces (with 1 = 0)
may occur in the present theory.

If 1=0, eq. (3.6) gives

(3.7) 80 =0,

while it is satisfied for arbitrary values of dq.
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In view of (3.7), from (3.3), (3.4) and (3.5) it easily follows
(3.8) 0E=0H=20, 0¢.=0, 0q,+0.

Therefore, we may conclude that material surfaces with the characteristic
speed 7 = 0 may exist: they are characterized by (3.7) and (3.8), i.e. only Jq;,
may undergo a jump across them. This means that 2 = 0 has multiplicity 2.

As we are interested in wave fronts, throughout this work we assume
A 70 and consequently dq,== 0.

It is always possible to refer the jump equations (3.3)-(3.6) to a fixed system
of cartesian coordinates (9; z, v, 2); without any loss of generality we may
further select the direction of z-axis in the direction of propagation, i.e.
e;= n.

Let us then denote by the subscripts 1 and 2 the components of JH and
JE transverse to n and orthogonal to each other.

We commence by observing that, from (3.3), and (3.6), 6F, and dq, may
be written in terms of 66, through the relations

— g, —
(3.9) 0B, = . E,00, 0 - a0

and, upon taking the inner product of (3.4) with e, and e, respectively, we obtain
SH,= — = 6B,, OH,— - 0B

(3.10) 1= ap 0 2—/1/1 1.

Hence, in view of these results, the jump equations simplify to

(1 — 2%eu)0B, — A2’ ul, 60 = 0, (L —2%epu)oB,— %' ul, 00 =0,
(3.11)

g

) ;
06’ By OB, + 220’ By 0B, +(A2(C — &' T — 0‘2 72 + 5 anh— %)50:0.

Equations (3.11) represent a linear and homogeneous system in three unknowns
0K, 68,, 60: it has non trivial solutions iff its determinant vanishes. By put-
ting equal to zero the determinant of the coefficients of 6#,, F, and 50, the
propagation condition follows straightway

Oc'2 2

— B) + 5t — ’—T‘) — &' uli} )4}= 0,

(3.12) (1—A2ep){(epdr—1) (22 (C—e' B> —
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with B = E® + E:. From (3.12), it follows directly

(3.13) 1—eul*=0,
! D} !
(3.14) w(2) = ep (C -—% (e 4 0g') E?) A1+ :O—a,uqniﬁ——(()—— % (e + Ge’) B2
X 0’ 1 2 f Z_
+ew + gEt)Z AT =0

Tet us first examine (3.13); as ¢(0) > 0, it yields two distinct and real roots
given by

(3.15) A= 2% = 4+ (e(@)p)™".

By analogy with the usual terminology, the corresponding waves are called
electromagnetic waves; meanwhile, we note that the expressions for A¥ show
the influence of the temperature field.

We look now at (3.14); it is easy to see that

o Z ) —— i’_z ZDZ
(3.16) w(0) 7 0, w(id) ~ 621 < 0
and, provided that the additional restriction

(3.17) c ~z— (6 +0e) B> 0,

holds, it follows w(A) — -+ oo, in the limits A — + oco.
Therefore, (3.14) should have four distinet and real roots 27, A7, 43; Ay,
which verify the relations

(3.18) << IT<0, O0<H<ii<i.

We may conclude that our system of basic equations (2.19) is not totally hyper-
bolic; anyhow, without further restrictions on the structure of the material,
(8.14) may admit imaginary values for A. It is noteworthy that, in the parti-
cular instance & = &(0 -+ 0,)~* (&, 0, positive constants), (3.17) reduces to
the initial requirement C > 0.

When the physical structure of the dielectric heat conductor enables us
to meet (3.17), the present theory bears evidence of six wavefronts: (i) the
electromagnetic wavefronts travelling with the speeds A%; (ii) the slow wave-
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fronts, which are two waves of thermoelectromagnetic type, whose speeds
are Ay and AF(|27] < AF, A7 < 2); (iii) the fast wavefronts whose speeds
are the remaining real roots to (3.14), A7, A7 (27| > 2F, 2F > 4F). It is worth

examining two particular cases.

Case 1. Let I, = 0, which corresponds to propagation into a region where
E is parallel to the normal n.
In this instance, (3.14) gives again the characteristic speeds 1 = 2* and

! ] ([2 % 6/
3.19 L:l:: ___8_ X JYJeN-1 (T n /._L' 2(0 — = YE?Y ).
(3:10) 2= (0= (e 0B (= ganz fgt + Z(0—7 (e + 0)59))
Let us observe that A} and A, are different in sign and 1 = || according
as ¢, = 0 ahead of the wave; clearly, they are real values if (3.17) holds.

=

Case 2. Let B,= 0 and &'(f) = 0 (uncoupled waves). Then the roots
(3.19) reduce to the form

. n ‘A X
(5:20) =g \/(0'0)2 T
0'= Cy— (r/%0?)¢q> being the positive specific heat. Taking into account
that ¢'> 0, 27 and 2 are real; ¥ = |A7| according as ¢, = 0.

This case is interesting, as it exemplifies the situation when the tempera-
ture field is quite uncoupled from the electromagnetic field. In fact AF are the
speeds of a temperature rate wave in a heat conducting solid (second sound in
solids [6], [15]), and 2* are the constant speeds of an electromagnetic wave
in a dielectric where thermal effects are neglected. Electromagnetic waves
are exceptional i.e. they never produce characteristic shocks[11]. On the
contrary, thermal waves are not exceptional, for instance see [15].

4 - Symmetric waves,

A necessary and sufficient condition to obtain symmetric roots from (3.14)
is to vanish the coefficients of A and 13 hence, in the present case, the symmetry
requirement implies ¢, = 0 ahead of the wave front.

For convenience, we make use of the definitions

(4.1) B=(e0p)r, M=t (= (e 4 0e) B2)

provided C — (&'fe)(e -+ 0¢') B = % > 0.
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Substitution of ¢,= 0 into (3.14), leads to the new wave speed equation
which, in a straightforward matter, may be rearranged as
_ 0

(4.2) ()»2 - ;Li)(}u? ! ;u;:) = cOF Ef )‘,i 2.

A direct caleulation shows that (4.2) has distinet and real roots given by

20

&

4.3) A=A+ £

;) + 2z

eC*

, €20
T %
eC*

i\/(zg (1 ) —az)e 4 a2z S mepe,

moreover, the following inequality holds
(4.4) A< (R, A5 <A}

the equality sign occurring if either H,= 0 or &'(6) = 0; in the latter case
JE=2¥ and 2¥ = - (z/v(0")} Le. the fast wavefronts are the electromagnetic
waves in the dielectric and the slow wavefronts become symmetric temperature
rate waves [6], [12].

In conclusion, provided only that (3.17) holds, eq. (4.2) gives two real and
positive values for 2%, hence we have two possible wave fronts of thermo-
electromagnetic type in the forward direction: the fast wavefront travelling
with speed 1} greater that 2} and 27, the slow wavefront whose speed A} is
smaller than A7 and }; propagation in the opposite direction with equal speed
is also possible.

The limit B, 0 ahead of the wave, provides the customary electromag-
netic wave in the dielectric (fast wave), whereas the slow wavefront tend to
a temperature wave whose speed 2% is affected by the coupling coefficient
e(0) and 25 = (y/Cer)t according as (1/2¢)(e"e — 2¢*)0.6* — (r/%6%)¢* = 0, where
(y/CgT)* is the so called second sound speed which is v,/V'3, if v, denotes the
speed of the first sound, see e.g.[4].

5 - Calculation of the discontinunity parameters

(i) Blectromagnetic waves.

As it should be expected, the necessary condition for the existence of wave-
fronts propagating with the speed A7 = 4 (e(0)p)™* is that 60 = 0 (and
also 0¢,= 0) and the transverse discontinuity vectors SH and O0E(JE,
— 0H,= 0) are mutually orthogonal, this condition being also sufficient as
soon as JH-E 0.
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On account of (3.3) and (3.4), we have
(5.1) (1 — cuA2)0H = &' 60InNE ,

and upon taking the inner product of (5.1) with E, the sufficient condition fol-
lows immediately.
On the other hand, if 1= 2%, relations (3.10) become

(5.2) 6B,= F ZOH,, OB,= + ZoH,,

where Z = (u/e)? is the impedence of the dielectric.

In view of 6H,= 0, (5.2) yields 6E -J6H = 0.

If B+ 0 ahead of the wave, (3.11),, imply 60 = 0, 0E,+0, hence from
(3.9) we have

(5.3) 0B, = 0¢,= 0.
Look now at (3.5): on appealing to the previous results, it follows
(5.4) E-dE=0.

This means that the absolute value of the electric field remains constant and
that the electric field rotates across the wave front.

Hence, our theory exhibits homothermal transverse electromagnetic waves,
whose peculiar properties are strictly analogous to the ones of the ordinary
electromagnetic waves in dielectric solids, without heat conduction, whenever
g(0) is viewed as the dielectric coefficient, see e.g. (18] 2-

Another noteworthy property of the electromagnetic waves is that they
are exceptional.

As shown above, for any characteristic value 2* and 17, we find two linearly
independent discontinuity veetors, respectively given by

6H1i:(6H”7 6H1’ 5H2’ 6E"7 (SEU 5E27 56, 6([11):(07 O, i Z~16E17 0; (SE]_, 07 Oy 0)7
OTE = (0, F Z101L,, 0,0, 0, 61,,0,0) .

Taking account that A*= -4 (e(0)x)™* depend on 6 alone, it is a simple
matter to prove that Lax’ condition of exceptionality holds i.e. 64 =0 (see
[11], [1],). As a final comment, let us remark that in the limiting case v — 0
(when (2.19), reduces to the parabolic Fourier’s law), the propagation con-
dition associated with (2.19) yields A*= (e(f)u)~*; consequently also the
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limit 7 — 0 accounts for the existence of transverse electromagnetic waves
(8E,= 6H,= 0) which are homothermal (00 = 0) and further SE-0H = 0,
but, instead of (5.4), we find d¢, = ¢'02E-JE, while dq, is now undetermined.

(ii) Thermo-electromagnetic waves. Slow and fast symmetric waves.

Let us assume that 1 is neither equal to zero nor to 27.

Cumbersome calculations allow us to arrive at the explicit expression of
the discontinuity vector associated with the waves of thermo-electromagnetic
type, in terms of the parameter characterizing the discontinuities of the first
derivatives of 0. '

From equations (3.9), (3.10) and (3.11), we obtain

;LQSI ).26
By, —

’
EZ?
€

(5.5) SIT = (0, &' Bod2 g — &' By 220, — ‘% B2 — 22),—

2 __. )2 .Z"_ 2___ 92 ___._._1_..__
=12 2 (= 1) gy, 90

where 2 takes either the values A¥ or AF.

Let us observe that (5.5) is just the same solution as the non symmetric
case, when ¢, 0, provided that 1 is given by a real solution of the general
equation (3.14).

As it usually happens, the waves of thermo-electromagnetic type are not
generally exceptional, i.e. it is possible to determine a finite critical time at
which their amplitude growths indefinitely. So these waves can develop into
shoeh waves.

We shall now proceed and give details of the growth or decay of the am-
plitude of one-dimensional coupled waves polarized in the (x,y) plane and
propagating along the z-direction.

6 - Special case: propagation of one-dimensional thermo-electromagnetic waves
entering a region at equilibrium and amplitude equation

TIn this section, we confine our attention to the propagation of coupled plane
waves along the z-axis; henceforth, all the field quantities depend on =
and ¢ alone, precisely we suppose E = H(z,1)ey, H=H(,t)e, 0(zt and
q = qz t)n.

In order to simplify the ensuing calculations, it is also assumed that the
region ahead of the wave has always been at a constant state, both thermal
and electromagnetic, then E+(z, t) = H+(z, 1) = 0*(2, 1) = 0 and also ¢*(z,1)=0
henceforth, the subseript « 0 » shall indicate that the quantities are evaluated
at equilibrium, i.e. at the state I7,= (X, Hy, b,, 0).
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The basic equations (2.19) read now as follows

—H,=¢l + ¢'Ef, B,=—uH,
(6.1)

. . 2
(C — &' B0 + ¢/ 0BT - k—%qq +g.=0, Ti=—q—y40,,

where a comma followed by the index #, denotes partial differentiation with
respect to z.

Throughout this section, it is assumed 1 > 0.

For definitess, let us rewrite some details of the one-dimensional counter-
part of our previous results (see 3).

Precisely, the trajectory X is said to be a one-dimensional thermo-electro-
magnetic wavefront if the fields E(z,t), H(z,1), 0(2,¢) and ¢(z,t) are jointly
continuous in z, ¢ on & X R+, while their first and second derivatives (in both
variables z and t) have at most a jump discontinuity across X, being con-
tinuous everywhere else.

On the basis of our assumptions, we have [E] = - etc., however for the
sake of convenience, here and in what follows, we use the notation B, H, 0
instead of - ete.

Further, when we form the jump of each term in the equations (6.1),
all subsequent (continuous) coefficients are evaluated ahead of the wave, i.e.
in the constant state I7,.

Let us suppose [0]s%0, consequently we here exclude the one-dimensional
electromagnetic waves, propagating with the constant speed 2.

Clearly, the derivation of the equation governing wavespeeds is just a
standard application of the conditions of compatibility given in e.g.[21]:
if f is continuous at the wave, it follows that [fe]=~ )rl[f].

Define
(6.2) o= (ew)i®y o= z/7 (0 —= (e + 0') B¥)s,

then the propagation condition is closely analogous to (4.2), provided the ad-
dition of the subscript « 0 » to all coefficients therein.

Under the requirement (Cr-- (1/2¢)(ee” — &'2)0H?),> 0, the propagation
condition yields two real (and constant) solutions for 1, A,, A,, characterized
by the inequality A, << (40, A40) < A0, then there exist two modes of propa-
gation specified by the speeds A, (fast wave) and 1, (slow wave).

Let us investigate the fast wave (obviously, similar considerations hold for
the slow one) propagating with the constant speed 1,,. Unless stated otherwise,
we henceforth omit the « 0 » notation.
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The discontinuity vector associated with them, reduces to

a(t)
— ]2

6.3) O = (H, E,0,q) = (g’Elf;)h, El , A2 L (22— 22))

rl

with 1 = 1, and a(t) = 6.

In order to obtain the differential equation giving the time rate of change
of the amplitude a(t), we here employ the well-known method of Thomas [19],
which is based on the use of the kinematical compatibility conditions on the
propagating trajectory 2'(t).

Furthermore, let us introduce the usual displacement derivative D, (or
Thomas derivative) expressed by [21]

(6.4) D,[G) = [G] + 2G.].

If A and B are generic quantities that suffer a jump discontinuity across X,
then

(6.5) [AB] = A,[B] + B,[A] + [4][B] =

Indeed the differential equation governing the evolutionary behaviour of a(?)
is derived by following a fairly standard procedure, but for completeness we
present here a brief sketich of the proof. Let us first differentiate equations (6.1)
with respect to time #, then we proceed and take the jumps of the resulting
expressions across 2.

With the aid of (6.4) and (6.5), the induced discontinuities H’z and ¢,
are immediately eliminated. On wusing formula (6.3), in view of the fact that
D, =0, other straightforward calculations enable us to arrive at the fol-
lowing equations in ¥, and 6,

) 2e'EAN: (e"e—2¢'2)\2—g"e ]2 .
(6.6) (A—A)E, + e 0.4 e G)DG =7 ) Bag= 0,

2) 26,,— Oc' BASH,

(6.7) . ( —

66”1]2 &'20 B2 28
2 —_—
)art £ e

+ {(Ce+ }DG

+ 294 T (oo 4 o Beas(hr— 2 s 22y
+ %( //+ 08”/ 2 2}92___0
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Equations (6.6), (6.7) are combined in order that the terms in E,z and 9,5
vanish. To this aim, look at the equation provided by the calculation: 0’ E1®
times (6.6) - (A*— 42) times (6.7).

On account of the propagation condition

0" B e’

X 7o
D —h ="

(6.8) (A2—23) (A2 (Cz+

the coefficient of 6", becomes null, so after some cumbersome calculations, we
easily establish the desired result .

Amplitude equation. The thermal amplitude a(f) of a one-dimensional

wave of thermo-electromagnetic type (fast wave) entering a region at the
equilibrium state I/,, obeys the Bernoulli equation

6.9) Da + aa + far=0,

where the constant coefficients o and f are given by

06”]]2

610 {2 (E@—2+ 20+ S e—Epa=L -2,

T

Bellﬂ

(6.10), (EGe—a + 2 G+ ) 2 —Ep
2% " n B "
= (5 + (Os+ (" + ) 5)22)- (22— 22) — (' + 308) ¢ oy
+ 36 ""-8- Bele(A2— 22)-1),

with 2 = 2,, 22> (2, x/v(Cz + 0" B2[2)).
If we denote by «(0) the initial amphtude, the solution to (6.9) hag the
usual form

(6.11) at) = .
l g) exp ot _——é

Indeed,.the evolutionary behaviour of a(¢)is well-known, see e.g. [3], however,
setting aside a detailed and unuseful investigation of (6. 11) some information
on the signs of o and § may be at order.
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Meanwhile, (6.7) generally accounts for the existence of a finite critical time
t,> 0, expressed by the formula

_ pa(0)
(6.12) te=—1lo (m(‘()‘))

such that in the lim ¢ —1,, |a(?)]| — oo; this means that a shock begins to form.

In agreement with physical expectations, « is here positive: this is a direct
consequence of (6.8). Further, note that « is also positive for the slow
wave front.

On the other hand, ¢, exists iff — o/(« + fa(0))>0, which means that B
and «(0) must be different in sign, precisely: «(0)<— («/f)(<0) according as
f 2 0. When a(0) = — a/f, (6.11) yields a(t) = «(0) V¢>0. The value — «/B
is usually called the critical amplitude of the fast wave. It may be interesting
to appeand some additional comment on the effective possibility of observing
shock effects. It is worth pointing out that ¢, depends crueially on the order
of magnitude of the relaxation time 7. Set 2,°= y/t(Cy-+ 0" F2/2), &" > 0,
o may be rewritten as

T2 (A — 22)
225225 — 22) + 22 —2)

oL =

that is o is proportional to z—! then, as it seems reasonable to expect the
order of magnitude of 7 very small (see [4] for an estimate of 7, valid for most
metals) large initial amplitude occurs for |a(f)| to growth. This means that
our wave may evolve into a shock wave in a short time.

Note that a simple case of (6.9) is provided by a heat conducting solid when
the coupling coefficient ¢ is constant: in this instance, 1’ = y/vCz, that is
just the usual (constant) square speed of a temperature rate wave in a solid.
It is easy to show that the discontinuity vector is OI7 = (0, 0,1, y/vi,)0

and further routine calculations yield « = 1/27, f= —1/0, then — a/f
= §/27 > 0. In conclusion, provided that (0) > v-1(8/2), there exists a critical
time ¢, = — 27vlog (1 —0/27a(0)) such that, as ¢->t,, |6(f)] — co. This

result is clearly a direct consequence of the ones stated in [15], where a more
general hyperbolic system is considered, so as to account for second sound
effect in solids.

Let us then suppose to include also the effects of the current density vector

£ in our analysis.

In addition to the constitutive relations (2.12), thermodynamics implies
also the classical Ohm’s law & = oE, where ¢ > 0 is the constant electrical
eonductivity.

30%
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Of course the presence of £, inside the basic equation (2.19),; due to the
continuity of E across X, do not change the possible speeds of propagation,
listed in 3 and is perhaps remarkable that even the conelusions previously
reached on the evolutionary behaviour of «(¢) do not seem to be seriously
affected.

Remark. It is worth observing that a more general model of thermo-
electromagnetism accounting for the current density # (of course of some
interest from a theoretical point of view) may be presented, by introdueing
another extra variable () in the fundamental free enthalpy density relation
(2.11) so that, besides the generalized Fourier’s law (2.13), from the reduced

dissipation inequality a modified Ohm’s law of the type: 7, 5 4 F= ok,
7.(> 0) being the electric relaxation time, is just recovered, see e.g. [12].
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Summary

In this paper we investigate in detail the non-linear wave propagation in heat conduct-
ing dielectric solids within the context of extended linear dirreversible thermodynamics.
The growth of the discontinuities associated with a one-dimensional thermo-electromagnetic
wave propagating into a region at equilibrium and the evaluation of the oritical time are
finally exhibited.






