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Lusa ArroTTI (%)

On the solutions

of the linear Maxwell-Boltzmann equation (**)

1 = Imtroduction

We consider 2 mixture of two different types of particles (called M and )
in the physical space. We suppose that particles M verify the following as-
snmptions: they condition the physical behaviour of type N, without being
conditioned themselves; their distribution function is known, but not neces-
sarily maxwellian.

As for particles &N, we suppose that every type N particle (with mass m)
is acted upon by an external force F (that depends on the position vector 7,
on the velocity v of the same particle and also on time ¢); that the collisions
of particles N amongst themselves can be overlooked compared to those with
particles of type M.

Now, f(r, v, t), probability density at time ¢ in the phase space of a single ¥
particle, satisfies, as is known [5], the linear Maxwell-Boltzmann equation
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v and k represent respectively collision frequency and scattering Kernel

(*) Indirizzo: Istituto di Matematica, Via delle Brecce Bianche, 60100 Ancona, Italy.
(**) Work performed under the auspices of G.N.F.M. (C.N.R.) and partially sup-
ported by M.P.I. — Ricevuto: 8-XI1-1984.
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The great importance of this equation in the sphere of the kinetic theory
of gases and in particular of plasmas is known.

We mention, for example, the studies carried out, starting from the above
mentioned equation, even if in its integral formulation, by Ganapol and
Boffi [7], on electrical conductivity and by Boffi, Molinari and Scardovelli [3]
on the propagation of electromagnetic waves in a weakly ionized plasma.
All this shows the great interest of the study of equation (1) and inparticular
of the corresponding Cauchy problem. Nevertheless until now this problem
has received very little attention: in fact the greater part of research carried
out on the Boltzmann equation concerns the non-maxwellian case, that is
the case F' = 0. As for as we know, the initial value problem for (1) has been
considered in [7]; by Ganapol and Boffi, supposing F to be constant, in [4] by
Boffi and Nounnenmacher, in [9] by Molinet, supposing 7 to be space-
independent and in [6] by Drange, supposing F to be the Lorentz face. Re-
cently with techniques which are different from those nsed in the mentioned
works, that is by using the linear semigroup theory, Arlotti, in a previous
paper [1],, studied equation (1) by supposing that the external force, the col-
lision frequency and the scattering Kernel depend on the position veetor and
on the velocity, but not on time.

The aim of this research is a further stndy of the Canchy problem for eq. (1),
which will be carried out, now supposing that functions F, » and k are depen-
dent also on time {. More precisely here we will suppose that at least the fol-
lowing assumptions are satisfied:

(i)y F:R?->R?is continnous;
(i), there exists a continumous function y: R — R* (set of all real non
negative numbers) such that Vie R, r, 0,7, 9 € R® it results

[ B(ry v, 8) — F(r', 0", 1) | < x(2) | (r, 0) — (¢, v") |

(here and following each R, n = 1, is thought to be provided with the usnal
norm which, without risk of misunderstanding, will, in every case, be indi-
cated by |-1]);

(i); there exists a continuous function »,: R — R* such that Vie R,
7, v € R® it results 0 < »(r, v, t) = v,(2);

(i)y the map R’ (r, v, 1) — ((1/m) div, F 4+ v)(r, v, t) € R+ is continuous;
(i)s VieR the mapping R°> (r, v, ') — (r, v, v, 1) € B+ is measurable;

(i)e V(r,v',t)eR7 it is [k(r, v, ', t) dv = »(7, v', 1);
RB

(i), YreRitislim [|k(r,v,v',t)—k(r, 0,0, 7)|dv=0 fora.e. (r,v')€ R".
t—>7 RB*
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These assumptions appear to be natural, considering the physical meaning
of functions F, v and k. As for unknown f, it must be, as a distribution function,
non negative, Lebesgue integrable, but not necessarily continuously diffe-
rentiable on the phase space R°. Therefore we are brought to consider f, in
the equation in question, as an unknown funetion of time with values in Banach
space X = LYR°). As a consequence of this, in the following section 2 we will
formulate the Canchy problem for the equation (1) in abstract form in space X.

Section 8 and 4 arve dedicated to a study of the linear operators A(¢) in-
troduced in 2 (see def. (4)).

Through this study in 5, using the evolution operator theory, we will
establish an existence and uniqueness theorem of the weak solution for the
Cauchy problem relative to eq. (1). Finally in 6 we shall see that, if further
adequate regularity assnmptions for F,» and k are verified, then the above
mentioned golution is also a strong solution.

2 « Abstract formulation

To formulate in abstract form the Canchy problem for eq. (1), we consider
the Banach space X = Li(RS), provided with the usnal norm, which we will
indicate by |-]|. We then observe that the left side of (1) can be written in
the more compact form

of of of s of ]
(g-{—w--a—;?)(m,t) where “'é&':z“"a_wh x=(r,v)eR*, teR

A1

(the meaning of @, @, #, being obvious).
Owing to (i); « is a known, continuous function defined on R7 with values
on Rs. Because of (i), there is also a continuous function y: B — R* snch that

(2) l“(%”"‘“(%”léﬂ(t)la}—yl V.’L‘,yERS, teR.

This allows us to define the folloxﬁng family of linear operators A(7).
We put VieR, fe X

0
(3) &f(t)fza"a;{c;

where, because of (2) and of a Rademacher theorem [10], the right side of (3)
makes sense as a distribution. For every t € R we indicate with A(?) the lineaxr

28
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operator defined by
(4) D(A@)={feX: #W)feX}, AW)f=SWDF, R(A(t)) C X .

We then define the families of linear operators B(t), K(t) and IL(t) (te R),
by putting

D(B(t)) = X R(B(t)) cx,
(5)

(B ) @)= —(» + %L div, I) (z, 1) f(=) = b(z, t) f(x) = (r,v)eR".
) D(E®#) =X R(E(®) € X,

(K@) f) @) = Jk(r, v, v, 8) f(r, v') do’ x = (r,v) € R°
- D(L() = X R(L(t)) € X,

Lit)f = B®)j + K(t)f.

We can immediately see, because of assumptions (i),-(i),, that definitions (5),
(6) and (7) are correct and that, for every ¢ € R, B(t), K(t) and L(t) are bounded
linear operators. If by,: B — R* is a continuons function such that it results
[b(z, 8) | < bo(?) V(, t) € R7, then we have | B(t)| < by(¢t). We have also @]
= »(f) and therefore | L(t)|| < bo(t) + »,(¢). We can finally see that the map-
pings t — B(t), t — K(f) and also ¢ — L(t) from R to Z(X) (set of all bounded
linear operators from X to X) are strongly continuons.

By using the previous notations, the Cauchy problem for the equation (1)
can be written in abstract form in the following way

d
(18) Eiz——A(t)f—{—L(t)f >0, f0)=/f=0,

where the unknown f is now a mapping of R+into X, d/dtis a strong derivative.

3 = The study of the linear operators A(f). Preliminaries

As explained in the previous section, let &: R?— R°® be a continuous
funetion which verifies condition (2).

It is known (see [13]) that such a funetion possesses almost everywhere
on R the first order partial derivatives 2#/0w, (b = 1, ..., 6), which are meas-
urable and bounded, giving for every h and for a.e. (2,1) € R, |(2.2/0m,)(«, )|
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6
<u(t). Therefore, if we put div e= > 0ay/0wy, then there certainly exists
h=1
a continmous function @: R — R* such that

(9) |div a(z, 1) | = f(t) for a.e. (x,t) € R7.

It is also known that, for such a funetion < and V(z,t) € R7, the initial
value problem

=3

(10) lew(%g) y e R% sekR; yit) =2 weR,teER

s

has one and only one (classical) solution.
This allows us to consider the function ¢: R®— R® defined by the con-
dition that V(z,t) e R? s — D(x,1,8), s€ R is the only solution of the pro-

blem (10).
We now list the properties of function @ which will later be useful; they

are proved in [8], [13], [14] and [1];.

Properties of @:
(), D, t,t) =2 Vze Rt, tekR.
(2), D(D(,1,8),8,0) = D,t,0) Ve e RS, o,st€R.
(2); Vs,te R the transformation @ — D(x, t, s) of R® into R® is meas-
urable, invertible with the measurable inverse @ — Dz, s, 1).
() |DP,t,s) — x| = bty s)|e] + b, 8) Vee R, s,telR

sV Vs sVi Vs
it B, ) = Jp(o)[exp Jule)do] ax, k(s 9) =] lal0, 0} [exp [uto) do] dr
sAt zs sAt TAs

sV
(@) 1B, 1, 9)| S (exp [olo)do) (Jo| +1) Voe s, 5, 1€ Rr
sAt

if o(t) = u(t)V |2(0,1)] VieR.

(@) || < (exp}\(i)t(o')da)(lcp(m, t,8)] +1) Yze R’ s,teR.
sAt

sVt

(@); |Dx,t,s)— D=, 7,8)| = [A(t, 7) |@| +k(t, T)] (exPp [u(o) do)
sht

YeeR', s,t,7€R.
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sVo tVr
() |Dlw, 1, 8) — D(a, 1, 0)| < [ for(7)(exp Jo(t') d2') dz](|@| 4 1)
sheo tAr
Yee RS, s,0,t€R.
sht sVt
(@) |z—y| expfp(o)do = |D(2,t,5) — @y, 1,5)| < |2 —y| exp [u(o)do
sVt s\t

Vo,ye R*, s,teR.
()30 The map B> (w,1,s) - O(w, i, s) € R® is continuous.

() Vi€ R the transformation (x,s) — (D(z,t,s),s) of R? into R? is
measurable, invertible with the measurable inverse (z,s) — (D(z, s, 1), s).

(@)1 V(2,1 5) € B® we have (90]0s)(w,1, s) = a(D(w, 1, s), 3).

()i There exists a measurable subset I of R? which has the following
properties: m(B"™\F)= 0; Yte R cross-sections {B;= x: (x,t) € B} are meas-
urable, having m(RE*\Z,) = 0; finally at each point (z, ¢, s) € R 50 that (z,t) e B
the following first order partial derivatives exist (0@/ow,)(z, 1, s) (b = 1,...,6).
For'any h, k= 1,..., 6, are all measurable the real-valued functions

0D, 0Dy,
(@, 8y 8) = Bm: (@,%,8), (@,1) — _8—%& (2,1, 5) s€ R arbitrarily fixed;
“h

(@, 8)—=(0D[0m,) (2, t,8) teR arbitrarily fixed;
o—>(0D,[0m,) (¢, %, 5), s,t€ R arbitrarily fixed.
(@)e If we put J(z, ¢, s) = det ((6D:/0m,) (2, ¢, s)), then we have

Viz,t,s)e ExR  J(,t,5) = exp [diva(D(z,t, o), 0) do .

i

sAt Vi
(s V(z,t,5) € BXR it is exp [ja(o)do < J(2, ¢, 8) < exp [ii(o) do.
sVt At

4 - Evolution operators generated by family {Am}

We now put Vs,ie R, fe X

(11) Us(ty 8)f = f(D(+, 1, 9)) .
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After having realized that (11) defines a family of linear operators from X to X,
we want to list the more important properties of this family; they can be easily
shown with techniques similar to those used in [1};.

(B Vs, t eR Uy, s) is a bonnded linear operator from X to X.

sV
(B)2 cxpfy o)do < | Uy(t, s)| < exp [ii(o)do Vs, 1€ R.
sV sAt

{f)s UottfszteR feX.
(B)a Uslty 8)Usls, 0)f = Us(t, 0)f Vo,s5,1€ R, je X.
(B)s lim Uy(t, s)f__Uor, o)f Vo,reR, fe X.
(t,s)—>{(1,0)
(B)s If feX and |x|fe X, then |@]| Tp(t,s)f e X Vs, t € R.
Moreover we have

[ 1] Uatty 911 < [exp;ffmm + @) o[ 217 + 111

(B), It fe X with |z|feX, then VYo, 7€ R we have
lim  [|&||f{(D(x,1, ) — Dz, 7, 0)) | de=0.

(t,0)—>(z,0) R®

(f)s It fe X with |z|fe X, then Vo, 7€ R we have
lim | (en®, 1) — an(, 1) {{(Pl@, t, 0)) | 4z = 0 h=1,..,6.

> R

(B If fe W' (R®) = {feX; offome X, h=1,..., 6} (we intend the
derivatives to be in distribution sense) then Vs,t€R +we have Uy, $)f
e WHI(Rs).

Proof. We first suppose fe OXRS). Then, for (f), f(D(-,18))€X;
for (@), @ — f(D(#, ¢, 8)) is Lipschitz continuous; for (o), Vo€ B thele exist
first order partial derivatives (9/oz)f(D(z,t, 8)) h=1,..,6 given by the
formula

0 [
(12) é:_v";f(@(w’ t,8)) = z

9 :
= ayfk (w,t,8) ¥y = D(x,1y8).

oD
= (D(a, 1, 8)) Ev‘f
Tt is obvious that, as a consequence of the properties of f and @, the right side
of (12) (and therefore also the left side) is Lebesgue. integrabe on E°; so
(8/0@) f(D(, B, 5)) € X Vh.

All this proves (see [1L], . 57) that Uyt s)f e W R*) and that formula (12)
is true also in distribution sense. In this way it rvesults for such an f and
Vy e 7 (E?)

s 0
(13)  — [H(D@, 1)) 5 1’)(ov)d =[ ik
BG

R pes1 afllk

09D,
(D(,t, ) W, (@, 8, 8) p(w)de
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Replacing @ by D(y, s, t) and considering (o), (a)y y (@)1a and (er)y; We can easily
see that (13) is equivalent to

d
(14) — 1w % (D(y, s,0))J(y, s, 1) Ay

0D,
-3 aqk V) 2 (@5 8,0)s % $)p( DLy, 5,0)d (3, 8, 1)y .

R E=1

From this result, we can immediately recognize the truth of the thesis in the
general case (see [2], p. 64).

(Bho If f€D(RY) = {fe W"{R"): |w|0f/om,€ X, h =1,...,6}, then Vs,
te R we have Uyt s)f e Z(RF).

Blu It fel(R) = {fecD(R"): |z|fe X}, then Vs,tcR we have
Uslt, 5)f € E(RY).

(B)r: Vi€ D(R®), v R it results lim A(#)f = A(r)f.

>

Bz VI€ED(RY), o,7€R it rvesults lim U, 8)A(8)f =Uy(z, 6)A(0)].

(¢,8)—>(7,0)

(B)1s Vfe2D(R) 7eR the first order partial derivatives (in the distri-
butional sense) of the funetion (z,s) — f(PD(, 7,s)) ((#,s) e R?) are functions
and also integrable according to Lebesgue on any subset of R” of the form
R®XI (I being a bounded interval), they are obtained by applying the nsual
differentiation laws.

Proof. It is similar to that of (8),.
(Bhs Vi€ D(RY), 0, v € R it results

hm][ (T7O‘+hf_—U0T7 )f

>0 h

— Up(r,0)A(o)f| = 0.
(B Vi€ D(RY), 6,7€ R it results

0 }’ — Uity
lim || Uolw +- 1 a);fh Yolm, 0)f + A7) Uo(z, 0)f| =0 .

=0

As a consequence of the above listed properties, the following is true.

Theorem 1. Ij assumptions (i), and (i), are true, then for each pair of
real numbers s, t there exists an operator U,(t, s) belonging to the set B(X) and pos-
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sessing the following properties:

st sV
() expfio)do = [Tt s)| £ exp [f(o)do Vs, t € R.
sVt sAt

(). Uolt,t) =1I VieR.

(ys) U,lt, o) Uglo, s) = Uy(ty ) Yo, s, t€ K.

(y)s The map (i,8) — U,(t, s) from R to B(X) s strongly CONLINUOUS.

(v)s (2/08) Uslty 8)f = Usl(t, s)A(s)f Vie D(Rs), s,teR and the map
R23 (t,8) — Uylt,8)A(s)fe X is strongly continuous.

(P)e (o/at) Uald, s)f = — A1) U,(t, 8)f Vie D(R%), s te E.

We call the family of operators {U,(t, 8)} the evolution operators generated
by {4(®)}.

5 « Weak solution

Tn virtue of the theorem established in the previous section, we can state
that every eventual strongly continuous solution of problem (8) is also a solu-
tion of the abstract integral equation

(15) f(t) = Us(t, 0) fo+ [Us(t, 8) L(s) f(s) ds.
Considering (15), the following holds.

Theorem 2. For every f, € X there exists one and only one function t — f(t)
defined on R+ with values in X which is strongly continuous and which verifies
integral equation (18). If f, € X+, that is if foe X and fo(x) 20 for a.e. v € R",
then also f(t)e X+ Vi> 0.

For the proof of Theorem 2 we will use the following perturbation lemma
which is independent from the preceding assumptions and physical motivations.

Lemma 1. Let {Z(t, s)} be a family of bounded linear operators from X
to X with the following properties

Zolt,t) =1 WieR;  Zolt, 0)Z(0,5) = Zoltys) Vo,s,1€R;
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the map R*3 (t,8) — Zy(t, s) € B(X) is strongly continuous; [|Zy(t,s)|] < go(sAt,
sV1), go being a continuous function with real positive values, which satisfies the
functional equation

9o(8, 0)g0(0, 1) = go(s, 1) Vs<o<1.

Moreover let {C(t)} be a family of bounded linear operators from X to X, so that O(1)
is strongly continuous in ¢ and |C(t)|< p(t) (t— 9(t) being a continuous function
with real positive values). :

Then there exists one and only one family {Z(t, 5)} so that function R*> (¢, 8)
— Z(t,8) € B(X) is a strongly continuous solution of the abstract integral equation

20, $) = Zult, 5) + [Zt, 0) O(o) Bla, 9)do

Proof. By putting

t
Z,(ty 8) = [Z4(1, 0) C(0) Zpy(0, 8)do 7 = 1,2, ..,
it is easy to recognize by induction that VneN, s,1eR wehave Z,(t,s)e HB(X)

with
sV¢

(fy(o)do)»

1Za(ts )| = gols by sV1) 2y

moreover Yn € N the map (¢, s) — Zn(t, 8) is strongly continuous. If then makes
sense to put

Z(t,8) = %Zn(ty 8) s

. n=0

since the right side series is strdngly convergent, uniformly in (4, s) on every
bounded rectangle,

Obviously Z(t,s) has the above mentioned properties; it is moreover
Z(t,t) =1 Vte R; Z(1, 0) Z(o, s)= Z(i, s) Vo,s,te R (see [13] p. 100); |z, s)|
= g(sAt, sVi), if we put for s< ¢

H
g(8y 1) = g,- (s, %) exp J""/’(O') do.

We are now able to prove Theorem 2.
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Proof. of Theorem 2. Let {U(¢,s)} be the family of bounded linear
operators from X to X defined by

(16) U2, 8) = > Un(t,s), Ualt,s) _fU (&, 0)L{g) Upylo,8)doe n=1,2....
n=0
Furthermore Vi = 0 we put f(¢) = U, 0)f,.

Because of Lemma 1 we can state that ¢ — f(¢) is a strongly continuous map
of B*into X and that this function is the only continuous solution of integral
equation (15). We now want to show that if f, € X+, then also f(¢)e X+. To
do this we consider the two families {U,(t,s)} and {T(t, s)} given by

Us(t, 8) = iSn(t, s), T s) = i T.,s8),

n={ n=0

with
t
So(ty 8) = Uy(ty8),  8u(t,s) = [Uy(t, 0)B(0)Spy(c,8) do n=1,2,...,

t
To(ta 8) = Uﬂ(t; 8), Tn(t, 8) = _[UV(ty G)K(G)Tn—l(ay s)de  m = 1,2,...
In virtue of (5) and (i),, it is easy to see, by induction, that Vfe X it resnlts

(8ulty ))(@) = = [[6(B(, 1, 0), ) Ao (Bl 1,8)  m=1,2, ..

o nl ]

and therefore
(17) (U2, 5)f) (&) = exp ([b(D(z, ¢, 0), 0) do) {(D(z, ¢, 5)) .

This result proves that if fe X+ then also U,(4,s)f e X+, Vs, te R. Because
of this, definition (6) and assumption (i); we can state that if f € X+ and s<t,
then also 7T'(t, s)fe X+,

To complete the proof of Theorem 2 it is enongh to show that 7'(¢, s) = U(t, s)
Vs, t € R.

In fact, in virtue of (7), we obtain by recursion Yne N, s,teR

Uty 8) = 8.8, ¢) +f EISh(t o')K(G) Uyi—r(0, 8)do .

8 k=0
n—1

But 3 8.1, o-) K(o) U,,_l_k(cr, s) is the general term of the Cauchy product of
k=0
two series ES (t, o) and ZK(G)U {0,s), which are fotally convergent as

n=0 n=0
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o, s and ¢t vary in a bounded interval. Therefore, for these g, s and i, also the
product is totally convergent; furthermore its sum is Us(¢, ¢)K(a) U(o, $).
Because of Lemma 2 the thesis is now immediate.

We should like to point out that family {U(Z, 8)} possesses properties
(0)1-(8)s listed in the following Theorem 3.

6 - Strong solution

The aim of this section is to show that, if the external force, the collision
frequency and the scattering Kernel verify not only conditions (¢),~(¢),, but
also further adequate regularity assumptions, then, for convenient initial fo,
Cauchy problem (8) has a strong solution. More precisely, we will consider F
in such a way as to verify the further condition

() Vh=1,...,6 and V(z,t)eR? there exist the partial derivatives
(9a|omy) (2, 1) and the maps (2,1) — (da/0w,)(2,t) are continuous from R7
into RS,

Regarding b and k, we will suppose that they verify either the further con-
ditions (j)s— (j)s and (j); or conditions (j),, (j)s and (j),-

(j). Vie R, fe D(R*) we have L(t)f € D(R®).

(j)s There exists a continuous function I,: R— R* such that Vie R,
f € 2(RS) it results

8 0 0
hgl [l 55 L@l + =l a—%L(t)fll] OLIA + Z(H li ol RE I \\)]
()e If (t,8)— Z(t,s) is a strongly continuons function defined on R?

with values in #Z(X) so that

i) if fe D(R*) then alto Z(t,s)fe Z(R°) and the maps (¢ 8) —
(8]0m) Z(t, 8) 1, (t,8) — |@|(0]omy)Z(t,8)f (h=1,..,8) of R* into X are
strongly continuous, then also (¢, 8) — L(f) Z(¢, s) is such a function.

(). VieR, fe &(R®) we have L(t)f € S(ES).
(j); There exist two continuous funections A: B - R+ and l,: B — E*
(with A= b, -~ »,) such that Vie R, fe &£(R°) it results

el 2671 Kol + @1 117
3 L 211 + o] 55 2 1]

OLIA + 1l lfll+2(ll5;; I+ 1=l 5 Il)]



[13] ON THE SOLUTIONS OF THE LINEAR MAXWELL-BOLTZMANN EQUATION 435

(j); if (3,s) = Z(t,s) is a strongly continuous function defined on R2
with values in #(X), so that

(i) if fe &(R®) then also Z(f,s)f e &(R®) and the maps

o 0
(t,8) = |@| Z(1, 8)f,(2, s) %MZ(% $)f, (& 8)—~|=z] o, Z@tys)f h=1,..s

of B* into X are strongly continmous, then also (¢, s) — L(t)G(, s) is such a
fanction.
Having considered this, we can see the truth of the following

Theorem 3. If all the assumptions (i1)-(1);, (j); and either assumptions
(1)e=(3)q or (j);-(j); are true, then the family of bounded linear operators {U(t, s)}
defined by (16) has the following properties:

sVt
(0), U@, s)|| < exp [2v,(0)do Vs, t € R.
At
d), U@, t)y=1 VieR.

8 U@, 0)U(o,s) = Ut s) Vo,s,teR.
0)y The map (i,s) - UL, s) from R to FH(X) is strongly continuous.
0)s (8/0s)U(t, 8)f = U, s)(A(s) — L(s))f Vs,t€ R fe DR, and the
map R*3 (1, 8) — Ult, s)(A(s) — L(s)) f € X is sirongly continuous.

() (9[a) UG, 8)f = (—A() + L)) U, 8)f Vs, t e R, f € D(RY) (f € E(R*)
respectively), and the map R23 (4, 8) — (— A@E) + L(t) U, s)f€ X is strongly
continuous.

—~ e~

To prove Theorem 3 we will use the following lemmas.

Lemma 2. If assumptions (i),, (i), and (j), are true, then strongly con-

tinuous function R®3 (t,8) — U,(t, s) € B(X) verifies both condition (i) of (j)s
and (i)' of (j);-

Proof. We have already seen (property (B),) that if fe P(R®) then
U,(t, 8)f € Z(R®); furthermore if f e &(R¢) then, because of (f)y, also Uy, s)f
€ &(R°) and, because of (f),, map (I, 8) — |x| U4, s)f is strongly continuous.

Regarding the strong continuity of funections

0 0
(ty8) “'>5‘a‘;;Uo(t7 $)f (% 8) — |o| "a'm—h U(ty 8) f h=1,..,6,

(f being an element of P(R®)) it is an immediate consequence of formmula (13),
of (@), (F)1y (B)sy (B, (B)r and of Lebesgue convergence theorem, if we con-



436 L. ARLOTTI [14]

sider that, because of (j);, real-valued funections (@, t, s)— (0D.[0m:) (2,1, s)
(hy k=1, ..., 6), exist and are continuous on all R®,
Tinally we can see, considering also (), and (o), that Vs, € R® it results

Vo Tt )] = [exp] (0) + w(e)) sl 7] + WI] 1t f< €0
(18) 3 (12 o, 9l + e 552 Tty 1)
< (ox0 [ (ulo) + o) + 0le)) 40) 12 3 (1510 + Wlalgly) st reowm.

Lemma 3. If assumptions (i);-(1)(j)y and either (§)o-(3)s07 (j ) (J) are true,
if B2 (t,8) — Z,(t, ) € B(X) is a strongly continuous function which satisfies
either condition (1) or (1)’ respectively, then alse

(t,8) = Z(t, 8) jU,,t 0)1(0) Zy(o, s)do  is such a function .

Proof. We suppose that assumptions (i),-(i); and (j):-(j)s are true and
that Z,(t, s) verifies condition (i) of (j),.

Then Vs, t€ R we have Z(i, s) € Z(X) and the map (2, s) — Z(¢, s) from R?
to #(X) is strongly continuous. Moreover, in virtue of (), Vs,0,t€ R if
f € D(RS), then also U,(t, 0)L(0) Z,(0, s) f € D(R®); furthermore Lemma 2 implies
the strong continuity of the maps of R into X

(ty 0y 5) — éi— Uo(t, ) L(0) Za(o, ) »

(@, 0y 8) — |@] 8 o(ty V. L{a) Zo(oy 8) f h=1,..,6.

From this the existence and the strong continuity on R? of these abstract
integrals follows

f 56— Uty 0) L(6) Zy(o, 8)f do f J| —2— Uot, 0) L(0) Zy(oy 8)fdo h=1,...,6.
T : o0y,

8

Considering this and the fact that W*(R®) with the usnal norm is a Banach
space, we can state that Vfe2(R®), s,t€ R we have Z(t,s)fe D(R’), since

aa ts)f——j'iUo(t 0)L{0) Zola, 8)f do h=1,..,6.
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The thesis of the case in guestion is therefore shown. The proof of the alterna-
tive case is similar.

Lemma 4. If assumptions (i);-(i);, (j)1 ond either (j)s-(j)s or (j);-(j); are
true, then Yne N the strongly continuous function R23 (1, s) — UL, s) € B(X)
satisfies either condition (i) or (i)' respectively.

Moreover in the first case the following inequality holds Vne N, s,te R,
f€ D(R°)

[ 0 °
(19) 2 (g Talty 911+ N2z Talty )1)
<Dj(exp Af (8(0) + (0) + () do) 7, (vat'(bo(w + (o) + 12 (o)) do)r,
if Df——l!fll+12§:(ll ”+ Il 5 ll)

whereas in the second case the following inequalities hold Y¥n e N, s, t € R, | € £(R®)

(}gtl (o) do)»
20) | |2| U, 8)f] < (expj( ) + (o)) do) H—— (Ifl + Hz|11),
5,2 ?
21) 3 (g Talty )1+ 1 10 5= Talty )11)

LA ; sVt
< D (exp [ (alo) + o) + wle))do o1y (T (34(0) + 12101 o),

if °|Ifll+|llwlf||+l2hi1(il H+Illl !I)

Proof. The first part of the thesis is an immediate consequence of the
previons Lemmas 2 and 3.

To verify inequalities (19), (20) and (21), we first observe that we have,
becanse of Lemma 1 and (f), Vs,te R

sV

(8/,\‘; (bo(o') + VO(U)) dd)"

Vi
(22) 1T, 8)| = (exp [ (o) do)

| — n=0,1,2,...
L7484 .
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As a consequence of (j);, (18) and (22) we obtain, by induction, the following

: 0
(23) 2 (!lg;k L(t) Uaty )1 + | ] B—%L(t) Ua(ty 5)fl

a8Vi sV¢
<1(t) Dfexp | (o) +(0) +0(c) do) 5 (T (0(0) + nfe) + 121(0) o)

n=20,1,2,...

From (18) and (23), (19) easily follows.
Similarly, inequalities (20) and (21) can readily be seen, by induction.

Proof of Theorem 3. Because of Theorem 1 and Lemma 1 we recog-
nize that, if only assumptions (i),-(i), are true, then family {U(t, 8)} possesses
properties (6);-(6)s.

The validity of (6); can be shown by considering that U(, s) is also a solu-
tion of the integral equation

Tlt, $) = Ualty 5) + [Tl 0)1(0) Us(o, 5) o

We now suppose that also assumptions (j);-(j), are trne. Then it easily follows
from Lemma 4 that Vfe @(R®) also U(, 8)f € Z(R®) and that the functions

0 0
(t,s>‘)——>—a—£—v~;l U, s)f, (t,s)e[w[a—@U(t,s}f h=1,..,6
are strongly continuous.

This result, properties (8);-(6)s, inequality (12) and the continunity of func-
tions «, imply the validity of (d) in the case in question.

Similarly we can see that, in the other case, (), is true.

From Theorem 3 we immediately deduce the following

Corollary 1. If assumptions (i);-(i); and (j)i-(j)a hold, then Vf,€ D(R®)
there exists one and only one continuous function E¥3it - fi)e Z(RS)C X
which is continuously differentiable and which is a solution of problem (8).

This is the function t — U(%, 0)f,.

Corollary 2. If assumptions (i)-(i)z, () and (3),-(3)s hold, then Vf, € &(R®)
there exists one and only one continuous function R+ 2t - f(t) € £(R°) which
is continuously differentiable and which is o solution of problem (8). This is the
function ¢ — U(t, 0)f,.
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Remark. Itisn’t difficult to find functions ¥, » and %k which satisfy all
the assumptions in this section.
In particular the following propositions are obvious.

Proposition 1. If external force ¥ and collision frequency » satisfy
assumptions (i);-(i)s, (j); and the following:
(1, div, F(z,t) =0 V(z,1) € R7,

D, Vh=1,...,6 and V(=) e R’ there exist the partial derivatives,
{(ov[0x,)(, ) and the maps (®,t) — (0v/0x,)(%, ) are coutinuons from R? to R,

(I)s there exists a continuous function #:R — R* such that Yh =1,...,6
and Y(z,t) € R7 it results |(0v/oz,)(x, t)| < 5(1),
then the family of bounded linear operators {U,(t, s)} defined by (17) has
the following properties:

8V
()1 |Us(t, )| < expfr(o)do Vs, teR; |Ust, )| <1 if s<t.
sAt

(&) Us(t,t) =1 VieR.
(€)a Us(t, o) Us(o, 8) = Us(t, 8) Vo,s,teR.
(g)s The map (¢, 8)—~ Uy(t, s) from R2 to #(X) is strongly continuous.

(e)s (0]28) Uy(t, 8)f = Us(t, s)(A(s) — B(s)) f V€ D(R"), s,te€ R and the
map R?3 (1, ) — Us(t, s)(4(s) — B(s)) f € X is strongly continuous.

(e)s (8/0t) Us(t, 8)f = (— A(t) -+ B(1)) Us(t, 8)f ¥f e &(R®), s,t€ R and the
map R?3 (4, 5) - (—A() + B(#)) Us(¢, s)f € X is strongly continnous.

Proposition 2. We suppose that the external force, the collision fre-
quency and the collision nucleus satisfy assumptions (j)s;-(i)s, (1)1~(1); and the
following:

Da Y(ryv,v',t) € R there exist the first order partial derivatives
(O%/0ms)(ry 0, 0"y 1) (h=1,...,6, (&, ..., %) = (r,v)) and VieR, h=1,...,6
the functions

I/
 Ra(r,v,v) - %G— (r,v,v,t)e R are measurable and bounded.
]

(1)s VY(r,v',t) € R* the functions

, ok ok
v = (o] k{r,v, 2, 1), v%é—%(o',v,v’,t) v—>|v|a—%(7‘,v,'v’,t)

h=1,..,6,
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are
my;:

()a

(1]

(2]
(3]

[4]

(5]
(6]
[7]

L. ARLOTTI [18]

Lebesgne integrable on R3 and there exist three continnous functions
R — R+ (i =1,2,3) so that Y(r,v',t) € B7 it results

[lvlk(r, v, ", 8) dv =< my(t)
RQ

ok

1) Ié_q—;; (ry0, 0", 8) | dv £ mo(¥),
RB .
ok ,
R_[ [fvl}r%(f,v,v,t)|dv§ma(t) h=1,...,6
(1) Arbitrarily fixed 7 € B we have for a.e. (r,v') e R®
]tim BI |o] |k(r, v, 0"y 8) — K(r, 0,0, 7) |dv = 0,
—T R°
ok ok

I — t) — — ! =
t—-i]tl R“J‘ Iawh(?"v”l)’ ) axh(lyl’@’v?'r)ldv 07
. ok ok ,
1‘1_1311 EJ [v] | e (ryv,v'yt) — %;(T,'v,v,r)ldv =0 h=1,..,6.

Then the family of bounded linear operators {L(f)} satisfies conditions
, (3); and (j);.
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Riassunto

Viene studiato il problema ai wvalori iniziali per Uequazione lineare di Mazwell-

Boltzmann, nell’ipotesi che la forza esterna T, lo frequenza v e il nucleo & di collisione dipen-
dano dalle variabili di stato e dal tempo. Usando la teoria degli operatori di evoluzione, si
dimostra dapprima un teorema di esistenza ¢ unicity di una soluzione globale, debole, non
negativa; si riconosce infine che, per convenienti I, v ¢ k, la soluzione suddetta é anche solu-
zione forte.






