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GIUSEPPE ROSOLINI (%)

Domains and dominical categories (**)

Dominical categories, first introduced by A. Heller in [2], are an axiomatic
approach to categories of partial morphisms. They appear to be an appro-
priate abstract tool to study recursion, cf. [1], [3]. We refer the reader to [2]
for further discussions on dominical categories.

The aim of the first three sections is to show how the axiomatic approach
fits the job: every dominical category is a category of partial maps of a suit-
able category. In the last section we try to convince the reader that a dom-
inical category with a Turing morphism %: X X X — X can be thought of as
a category of sets and partially defined maps with an enumeration from X
onto the set of partial maps from X into itself, in a suitably weak theory of sets.

We introduce definitions and notions. Then we build the category of do-
mains, and show that its category of partial maps nicely embeds the given
one. In order to do this we discuss a few topics about categories of partial
maps. Then we shall produce a topos, into which the dominical category
embeds preserving all the structure of dominical category.

We would like to thank M. Hyland and C. Marchini for the very many,
very long, and very useful discussions they sustained with the author during
the preparation of the paper.

1 - Dominical categories
As said in the introduction, the notion of dominical category is intended

to axiomatize categories of partial maps.

(*) Indirizzo: Dipartimento di Matematica, Via Universitd 12, 43100 Parma, Italy.
(**) Ricevuto: 4-VII-1984.
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We say that a category C is pointed if for every pair of objects X and ¥
there is a map 0: X — ¥ such that composition with any map gives the cor-
responding map 0. In a pointed category we call a map f total if it reveals
zero maps: if fow = 0, then w = 0.

Any identity map is total and composition of total maps is total: the sub-
category of C whose maps are the total morphisms is denoted by C,.

Def. 1.1. A category C is dominical if it is pointed and is endowed with
a functor — X +: O xC — C of pointed categories which will be called product
such that, when restricted to the category C, of total maps, it is an actual
categorical product. Moreover, projections and diagonals, which are defined
in the category C., satisfy the following conditions: for any map w: X -~ Z in C

wX0=0Xw=0, pwxid)=wop,
qlid Xw) = wogq, (wxw)d= dow,

where p, ¢ and d are the first and second projections and the diagonal map
respectively. Finally, the isomorphisms a and ¢ for associativity and com-
mutativity defined, as usual, by

a= {{p,pogd,qoqy and t=<g,p>,
are natural on € in all variables.

Examples 1.2. We first quote the obvious ones: the category of sets
and partial maps; the category of topological spaces and maps defined on
open subsets; the groupoid of partial recursive functions of natural numbers.
Another non-trivial example is the category of posets with a bottom element
and maps preserving order and bottom,

Def. 1.3. A functor ¥: C — D between dominical categories is dominical
if it preserves zero maps and produects.

We must now recall a notion which Heller introduces in [2]. Given a map
w: X — Y in the dominical category ¢ we write dom w for the map p(id X w)d:
X - X, where p is the first projection from X X ¥ and d is the diagonal map
of X into X XX. Below we list a few properties of domain maps.

Proposition 1.4. The domain operator has the following properties:

(i) dom(dom w) = dom w;
(ii) dom wodom z = dom zodom w = dom(dom wodom z);
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(iii) dom wodom w = dom w;
(iv) dom(woz) = dom((dom w)oz);
(v) w= wodom w;
(vi) dom J=id if and only if f is fotal;
(vii) dom(w X#) = dom w X dom 2.

Proof. Ses[2] for (i)-(iv). To prove (v), just recall the definition of
dominical category to check that w = podow = p(w Xw)d = p(w Xid)(id X w)d
= wop(id X w)d = wodom w. One implication in (vi) follows from the fact
that product is categorical product on C,. The other one follows from (iv)
and (v). As to (vii), notice that the map

PRPy XD EXYYX(LXW) > (X XZ)X (X X W)

can be obtained as composition of isomorphisms for associativity and com-
mutativity, hence it is natural in all variables; thus evaluate

dom(w x 2) = p((id xid) X (w x2)) & = (p X p)((id X w) X (id X 2))(d X d)
= (p(id X w)d) X (p(id X 2)d) = dom w X dom z

— beware: we forgot about the indices!

2 - Categories of partial maps

The main examples of dominical categories are categories of partial maps.
We treat them rather extensively in this section as we do not have a good
reference for the subject.

Let 4 be a category and let M be a family of monics of 4 closed under
identities and composition with the property that any pullback of a monic
in M exist in 4 and a representative of it belongs to M. We shall call such
a family a notion of partial. We must point out that the last request on M
does not yield that M is closed under isomorphic monies.

Def. 2.1. Given a notion of partial M in 4, a partial map (m: 4 » X,
w: A —+7Y) in A said to be defined in M, if m is in M. Two partial maps
mi:Ad» X, w: A —>7Y) and (n: B> X, 2: B—Y) are equivalent if there is
an isomorphism 4: 4 — B making the two obvious diagrams commute.

The conditions on M are forced to be like that as soon as one tries to
define a category of partial maps: the category P(4/M) of partial maps de-

*
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fined on M has the same objects as 4 and equivalence classes of partial maps
defined on monics in M as arrows. Composition of two maps whose repre-
sentatives are (m: 4 » X, w: A - Y) and (n: B » Y, z: B — Z) is just rep-
resented by (mow-(n): wYB) » X, zon*(w): w(B) » Z), where w-(B) and
the maps from it form the pullback of n and w, as usual.

Suppose A4 has a strict initial object; we say that the notion of partial M
is decent if for any monic m which is not iso, there is a map which pulls it
back to the least subobject.

We can leave the proof of the following statement to the reader.

Proposition 2.2. Let A be a category with binary products and a strict
initial object, let M be a decent notion of partial. If all monics of the form 0 »» X
are in M, then P(A[M) is a dominical category.

There is a simple way to describe domains in the dominical sense in P(4/M).

Lemma 2.3. In the assumptions of 2.2, in P(4|M) the domain of a map
(m: A X, w: A —Y) s the equivalence class determined by the pair (m: A = X,
m: A > X).

Proof. Recall that the composition defining a domain is built with first
projection and diagonal which are total maps. So we just need to check what
the composition

(fdxm: XXA» IXZX, p: XxA—+X)o(id: X>»» X, d: X - X xX)

gives. As a pullback of id Xm along d is m itself, which belongs to M, the
result follows immediately.

3 - The category of demains

We intend to produce a category for which the dominical category C con-
stitutes a category of partial arrows. Think of the domains as a sort of res-
triction maps: we shall build a category on these maps as objects.

Let Dom(C) denote the « category of domains of C». Its objects are the
maps in C of the form dom w and its arrows f: dom w — dom # are the maps
in C which are defined on dom w and take values in dom #, in the sense that

domf=domw and f= domzof.
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Identity maps are the domains themselves and composition of f and g in
Dom(C) is gof as composed in C; indeed, if f: dom w — dom z and ¢: dom 2
— dom v, then dom(gof) = dom((dom g)of) = dom((domz)of) = dom f = dom w,
and gof == dom vogof.

The category C, of total morphisms in C is embedded into Dom(C) by
taking an object to its identity map and a map in C to itself. We ghall show
that the category Dom(C) is the natural completion of C with respect to
domains. In order to do this we need the following

Lemma 38.1. (i) Let w: X — Y be a map in C; then w induces ¢ map
ws: dom w — idy in Dom(C). (i) Let v: dom w — dom 2; then v = dom zovodom w.
(iii) Let dom v: dom w — dom 2; then dom v = domw and it is a monic in
Dom(C). (iv) Let w,2: Z — X XY be maps in C and suppose pw = pz and
qw = gz; then w = 2.

Proof. (i) Follows from 1.4(v). (ii) As dom v = dom w, v = vodom w and
the result follows from the very definition of map in Dom(C). (ili) By defi-
nition, dom w = dom(dom v) = dom ». Hence, for any y with target dom w
in Dom(C), dom woy = f: this yields the assertion. (iv) The map {p, ¢>:
XxY—>XxY is the identity and is equal to (pXg)d. Now consider the
following equalities: w = (p X g@)dw = (p X g)(w Xw)d = (pw X gw)d = (pz X gz)d
= (pX @)z X2)d = 2.

We can now give a more detailed picture of C, in Dom(C).

Theorem 3.2. The embedding of G, in Dom(C) is full and faithful, and
preserves products.

Proof. Full-and-faithfulness is trivial. As to product-preserving, take
X x Y in C, and suppose f: dom w — idy and ¢: dom w — idy. Then we want
to prove that the map h = (f X g)od is the unique map from dom w into idy xidy
induced by f and g which does the right job. To show that & is defined on
domw:

dom & = dom{(f X g)od) = dom(dom(f X g)od) = dom((dom w X dom w)od)

= dom(dodom w) = dom(dom doedom w) = dom(idodom w) = dom w .

It is easy to check that composition of 2 with projections give either component,
Finally, 3.1(iv) give uniqueness of &.
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We shall identify C, with its image in Dom(C), and ecall its objects total.
Now we move on to the study of Dom(C).

Theorem 3.3. The category Dom(C) has binary products and a strict
initial object; it has inverse images of monics of the form dom w. Thus the family D
of domains is a decent notion of partial. The category C is embedded into the
category P(Dom(C)/D) of partial maps defined on domains via a dominical
functor I.

Proof. The product dom w xdom # is just dom(w xz): the proof of this
follows from the fact that it embeds naturally into X x Y, if these are the
total objects on which w and # are given. We prove that the domain dom 0
of any zero map in C is strictly initial. Let dom w be any object of Dom(C);
then the appropriate map 0: dom 0 — dom w is the only one connecting the
two since any other f must be equal to fodom 0 = 0. As any g into dom 0
must equal dom Oog = 0, the initial object is strict. The second part is a
restatement of a property given in [2], the inverse image of dom w along f
being dom(dom wof). The embedding I is defined by taking a map w: X — Y
in C to the partial map between total domains X and ¥ in Dom(C) defined
on the subobject domw of X by w itself. We leave to the reader to check
that everything works fine. Notice that a zero map goes to the partial map
defined on the least subobject.

Without any other formal statement we think that this already gives a
clear picture of Dom(C); any map in it represents the partial map induced
by a map in C possibly corestricted to a domain, as long as this corestriction
does not influence it.

Corollary 3.4. The tmage of the embedding of C into the category
P(Dom(C)/D) is the full subcategory of the total objects.

4 - Representation of dominical categories

In this section we first treat the problem of « good choice» of represen-
tatives for subobjects and show how generic the embedding of 3.3 is.

Let 4 be a category and let M be a decent notion of partial. After forming
P(A[M) one is led to consider Dom(P(4/M)), hoping to get 4 back. The
aim can be achieved successfully.

Theorem 4.1. Let A and M be as above. Then there is a functor
J: A~ Dom(P(A[M)) which is full, faithful and representative.
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Proof. For X an object of 4, define J(X) as the equivalence class rep-
resented by the pair (id: X — X, id: X — X), which is a domain by 2.3. For
f: X =Y in 4, let J(f) be the «partial map» represented by (id: X — X,
f: X —Y). As to representativity, recall from 2.3 that an object of Dom(P(4/M))
is represented by a pair (m: 4 > X, m: A » X), with m in M. This object
is isomorphic to J(4).

To have a picture of what Dom(P(4/M)) is, think of its objects as equiv-
alence classes of «superobjects» of 4, see [4]. In order to fix this idea, we
introduce the following notion.

Det. 4.2. The functor J appearing in the conclusion of 4.1 being an
equivalence, an inverse to J is called a good choice for representatives for
the family M.

Examples 4.3. In the category of sets, with M the class of all monics,
images are a good choice for representatives.

As an argument in favour of the definition given in 4.2, we state a simple
criterion for good choices.

Proposition 4.4. Let A and M be as in 4.1. If any two monics m and n
in M which are equal up to an isomorphism i (say, m = noi) are actually equal,
then M has a good choice for represeniatives.

Indeed, the construction of taking the category of domains, will lead us
to a complete family of examples.

Theorem 4.5. Let C be a dominical category and let Dom(C) be the cate-
gory of its domains. Then there is a good choice for representatives for the family D
of domain maps.

Proof. Define the functor K: Dom(P(Dom(C)/D)) - Dom(C) as
K(dom w: domw — dom 2, domw: dom w — dom 2) = domw .

It is an application of 4.4; if dom w: dom w — dom 2 is isomorphic to dom vs
dom » — dom 2 via 7, then dom w = dom vo? = dom vodom w = dom wodom v
== dom ». Thus K is well-defined on objects. Definition of K on maps is ob-
vious. It is straightforward to prove that J and K form an equivalence of
categories.

26
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We are now in a position to give the property which characterizes Dom(C).

Theorem 4.6. Let C be a dominical category, let I be the embedding
into P(Dom(C)/D). Let A be a category with bimary products emd o sirict
initial object, let M be a decent notion of partial with a good choice for rep-
resentatives. Given any dominical functor F: C — P(A[M), there is a wumique
functor I': Dom(C) — A which takes domain monics to monics isomorphic
to some in M, and preserves products, initial object and pullbacks of domain
monics, such that F ~ P(I')ol.

Proof. Notice that F preserves domains. Thus F(dom w: X — X)
= (m: A»> FX,m: A » FX). Define F'(dom w)= K(m: 4 » FX, m: A » FX).
Next the definition on arrows is forced: F'(z: dom w — dom 2) = h: F'(dom w)
- F'(dom z), where h is the unique map through which (the representative of)
F(z) factors. All the checkings are straightforward.

5 - A topos for a dominical category

In this last section we produce an appropriate dominical embedding of a
dominical eategory C into a category of partial maps of a topos. In order
to do this, consider the category Dom(C) of domains of C. A topos of sheaves
on it will do. First take the topos of presheaves: it is well known that the
Yoneda embedding preserves all the limit structure, but if we want to preserve
the initial object, we must consider just sheaves for the « almost » trivial topo-
logy j on Dom(C) where the empty family covers 0. The following statement
is straightforward.

Proposition 5.1. ZLet E denote the topos Sh(Dom(C),j) of sheaves on
Dom(C) for the topology j. The Yoneda embedding induces a functor J: Dom(C)
— E which preserves limits and the initial object.

In the sequel we shall make no distinetion between Dom(C) and its image
through J in K.

Let D denote the family of domain maps of Dom(C). As the family of
subobject of represented by monies in D is closed under pullbacks in Dom(C),
it defines a subfunctor of the subobject classifier Q2 of E as follows: let dom w
be any object of Dom(C); define Qp(dom w) as the set of all subobjects of the
form dom z: dom 2z » dom w. Pullback along any map «:dom v — dom w
applies Qp(dom w) into p(dom »). Therefore it gives rise to a subfunector
of Q> 0.
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Call a subobject C = A in E a domain if its classifying map factors
through Q.

Remark 5.2. If 4 is a representable object of E, then a domain O» 4
is represented by a monic in D.

Proposition 5.3. The subobject Q, coniains true and false and is closed
under conjunction.

Proof. Trivial.

Obviously enough, as we have internalized the notion of domain of C,
we are now able to deseribe properties of C in the topos E. First of all we
use this to characterize maps of C.

Def. 5.4. Let A be an object of E, let 4 be the object representing par-
tial maps into 4. Let Ex: 4 — Q be the classifying map of 4 »» 4. Define
A to be (a representative of) the pullback of Q, > Q along BEx: 4 — Q.

Notice there is a natural injection of 4 into A induced by the pair A 4
and trueo!l: 4 — . Instances of this construction can be found in [4].

Theorem 5.5. Let A be an object of E. Then A » A classifies partial
maps into A defined on a domain.

Proof. Straightforward.

By Theorem 5.5 any map w: X — Y in C corresponds to a unique map
w’: X — ¥, which classifies the partial map w:domw — Y as dom w:
dom w > X is a domain monic.

The Jast « dominical » construction we consider, which motivated the paper,
is that of a Turing morphism. It was introduced in [2] and used also in [3]
under a different name.

Def. 5.6. A map u: XXX — X in the dominical category C is a Turing
morphism if it is not a zero map and, for any map w: ¥ XX — X, there ig
a total map f: ¥ — X such that w = u(f xid) — no request of uniqueness for £,

The leading example is the coding of partial recursive functions in the
dominical category of partial recursive functions on ¥. We have to point out
to the reader that the definition in 5.6 is different from the one given in [2],
but coincides with it in the case of an «isotypical » category.

In the topos E a Turing morphism does exaetly what it is expected to:
it enumerates all the partial maps from X into itself.
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Theorem 5.7. A map w: X xX — X is a Turing morphism if and only
if the map u': X —[X — X1, obtained by exponentially adjoining w": X X X — X,
is an epimorphism in the topos E.

Proof. Suppose % is a Turing morphism: we want to show that u’ is
pointwise epi. So let dom z be an object of Dom(C), say it is an endomorphism
of Y in C, and let w": dom #x X — X be an element of [X — X]. Then w’
classifies a partial map w: dom w — X, with dom w > dom e XX » ¥ xX a
domain monic. Thus w: ¥ x X — X in C; hence there is a total map f: Y - X
such that w = u{f xid). Therefore, set g the map fodom z:dom z — X, it
holds that w = wu(g xid) in Dom(C). The map classifying w is then «"(gxid),
yielding that w"= u"(g xid) = u/(g). Conversely, suppose ' is epi. As E is
essentially a topos of presheaves over Dom(C) without the initial object, %'
must be pointwise epi. Take a map w: ¥ xX — X in C. It induces a map
w': YxX — X in E, that is an element of [X — X)(¥). As %' is pointwise
epi, w'= u'(f) for some element f of X(¥). By this we mean a map f: ¥ - X
in Dom(C), which is a total map f: ¥ —X in C. As «'(fxid) = %'(f) = v’
they classify the same map. Hence w = u(f xid).

As 2 last remark we notice that a Turing morphism satisfies a stronger
property in E, as w' is pointwise epi.

Corollary 5.8. Let u: XXX — X be a Twring morphism. Then « com-
position with w' on the left » is epi for all representables, that is the map w'o—:
[A—X] >[4 —+[X—~ X1] for all representable functors A in E.
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Sommario

Data una categoria dominicale C, st introduce una opportuna categoria di « domini »
per rappreseniare C come calegoria di mappe parziali. Si riesce a dare una proprietd
universale che caratterizza la costruzione. Quindi si studiano i morfismi di Turing in un
topos che estende la categoria di domini, mostrando come essi possano essere considerati
enumerazioni delle funzioni parziali dell’oggetio in sé.






