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Generalized chromatic numbers of some graphs (II) (**)

1 — Although this paper is a continuation of [3], we make it self-contained
by recalling the main definitions and results.

We will adopt the definition in {1];. Let 4 be a set of natural numbers.
The A-chromatic number of a graph @&, g.(&) (4 c N), is the smallest number
of colours needed to colour the vertices of @ so that the distance between any
two vertices with the same colour is not in 4.

In [5] we determined the chromatic numbers of some graphs when 4 = {1,
3, .}y A =1{2,4,..}, or A= {c}. We will now determine some other results.

Let ¢'(®@), ¢"(G) and g.(G) denote these numbers, respectively. We call the
-corresponding colourings odd-colourings, even-colourings and e¢-colourings,
respectively.

As usual, let [#] denote the greatest integer not exceeding the number =
and [#] the smallest integer not less than .

2 — Consider now a n-cycle C,. Let the vertices of C, be vy, ¥y, cory Vpy-
In [5] ¢.(C,) has been calculated. We now determine g'(C,) and g”(C.).

We first of all prove the following

Lemma. If n is odd, all vertices with a given colour must lie in one half
circle (1).

(*) Indivizzi degli AA.: G. Pica, Istituto di Matematica, Facoltd di Ingegneria,
Via Claudio 21, 80125 Napoli, Italy; T. Pisaxski, Oddelek za Matematiko, Univerza
v Ljubljani, Jadranska 19, 61111 Ljubljana, Jugoslavija; J. Smawe-TavyLor, Depart-
ment of Mathematics, Simon Fraser University, Burnaby, Canada.
(**) Work performed under the auspices of G.N.S.A.G.A. (C.N.R.) and partially
supported by Research Council of Slovenia, Yugoslavia. — Ricevuto: 22-V-1984.
(1) A half circle is a set of vertices labeled v,, ¥4y, v, Viginjay-
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Proof. Without loss of the generality let the given colour be 0 and vertex
v, be coloured with colour 0. Let o' the vertex furthest from o, in the clock-
wise direction which is coloured with the colour 0 and ¢” the furthest from v,
in the counter-clockwise direction which is coloured with colour 0. If v,, v’
and v" do not lie in one half cirele, the shortest path from o' and v” does not
pass through v, and thus must be of odd length if » is odd.

Theorem 1. ¢'(C,) =2 ¢f n is even; ¢'(C,) =3 if n=3,5,9; ¢'(C,) = 4
otherwise.

Proof. Consider first of all » even. In this case O, is bipartite and the
result follows readily.

Now let » be odd. In view of the lemma we see that the most vertices
can be coloured with any given colour is every other vertex of one half circle.
If » = 2k 4 1, this number is [(k + 2)/2]. Thus with three colours we can
colour at most 3([(k + 2)/2]) vertices. If we are to colour all the vertices
of C, with three colours we must have 3([(k + 2)/2]) >2% -+ 1. This inequality
holds for k = 1,2,4 or » = 3, 5, 9. In all these case we have colourings using
three colours. Namely, to obtain an odd-colouring of C, we assign distinet
colours to every vertex, to obtain an odd-colouring of C; we assign the colour 0
to vertices v;, v;,., the colour 1 to vertices v, ., ; .3 and the colour 2 to ver-
tex v,,,. At last to obtain an odd-colouring of €, we assign the colour 0 to
verbices v;, V;.5, Vi4, the colour 1 to vertices v; s, v; 4, v..1, and the colour 2
to vertices v, ¥i.5, ;7. For other odd cycles we can construct a colouring
with four colours in the following way. One semicircle is coloured alternately
with colours 0 and 1 while the other half is coloured alternately with colours 2
and 3.

Theorem 2. g¢"(C,) = [n/3] if n is odd, n = 5; ¢"(C,) = [n/2] otherwise.

Proof. First we consider n even. In this case we can colour with any
given colour at most two vertices. Indeed let v,, v,, v, be three vertices such
that, for example, distance between v, and v;, d(v;, »,), and the distance be-
tween v; and v, d(v;,v;), are odd. Without loss of the generality suppose
t<<j < k. Then the distance between v, and v, is equal to d(v;, v,) -+ d(v;, vz
or equal to n— [d(v,, v;) + d(v;, v.)]. So that it is even. A colouring using
n/2 colours is obtained by eolouring v, and v,4,, with colour ¢, for ¢ = 0, ..., n/2.

For n odd we can colour at most three vertices with the same colour. Thus
9"(Cn)>[n/3]. Now consider # odd, n > 5. Let n = 2k - 1 and j = [(k-+1)/3].

If & = 3j + 1 then n/3 = 2§ + 1 and with colour ¢ we colour the vertices v,
Vpjaps WA 0y ., for ¢ =0,...,2/8 —1. In this case g"(C,) = [n/3].
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If & = 3§ then [n/3] = 2j + 1 and with colour ¢ we colour the vertices v,;,
Vpjpiysy Vaipe 10T 2= 0, ..., 2 —2. The uncoloured vertices v,;_y, 0s;, ¥4;_; and
¥,; can be coloured with two new colours, thus giving a 2§ - 1 colouring. So
in this case g"(C,) = [»/3].

If k= 3j—1 then [n/3] = 2j and with colour ¢ we colour vertices v,
Vgs_1ys o0A 0y, for 1 =0,..., 2/ —2.

The vertices v,;_, and ?4;_, are left uncoloured, but can be coloured with
one more colour, again yielding an [#/3] colouring.

For n = 3 we have the optimal colouring when all vertices receive the
colour 0. Thus ¢"(C,;) =1 = [3/3].

For n = 5 it is readily seen that 3 colours must be used, thus g"(0;) = [5/2].

3 — Consider now the complete multipartite graphs. These graphs are not
complicated to colour partly because their distance set D = {1, 2} is so simple.

Thus for instance g¢"(kK, ) = ¢.(K, ) and g'(K, ) =g(K, ).

13 <y R 12 vy g

y=1F and g"(K

Tizs ooy BE

Theorem 3. ¢'(K, . ) = max {n,, ..., %y}

Proof. Two vertices in the same partition have a distance of two. This
means that in the case of an even-colouring all the vertices in any given par-
tition must be differently coloured. We can however use the same colours in
different partitions. Thus ¢"(K, . )= max {n, ..., m}.

For an odd-colouring we must colour vertices in different partitions with
different colours. Thus we need at least k colours. However all the vertices
of any given partition can be coloured with the same colour, thus yielding a
k-colouring.

Next we look at the problem of colouring a special derived graph G(m)
when we know the generalized chromatic number of the graph G. G(m) is
obtained. by taking m copies of G and for each edge in the graph & taking
a complete bipartite graph on the corresponding vertices of G{m). In other
words G(m) is the lexicografical product of G by K,..

Theorem 4. Let G be a connected graph. Then g(G(m)) = gu(G) if 2 ¢ A4;
gs(G(m)) = mg,(G) if 2eA.

Proof. This result follows readily from the next relation

de(v,u) if uz=0

d0(7n)((7]7 7:)7 (’LL, .7)) = \

2 if w=w,
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where with (v, ) we denote the j-th copy of the vertex » of G and with
dg(u, v) the distance between % and v in the graph G.

Finally we consider generalized colourings of products of graphs.

Theorem 5. Let @ and H be arbitrary graphs and L = G X H their car-
tesian product. Then

max {g.(@), .t],z(H)} < ga(L) <min { | V(H)

9u(&), | V(@) | gu(H)} -

Proof. As G and H are induced subgraph of L we clearly have g (G)
< gLy and g (H)<gu(L) and the left inequality follows.

The product L can be regarded as formed by |V(H)| induced copies of G
with additional edged joining vertices in distinet copies. Therefore a proper
A-colouring results if we take g4(G) colours for each copy of @ and use disjoint
sets of colours for different copies. This yields an A-colouring with | V(H)|g.(@)
colours. As the role of @ and H is symmetric we obtain the right inequality.

Note that in the case of ordinary colourings the left inequality becomes
an equality [6]. For ¢ = O,, H = K, and 4 = {2}, we get 2<g,(0, x K,)< 4.
As g,(Cy X K,) = 4 we see that the right inequality is also possible.

It is interesting that in the next theorem we can prove a closer lower
bound for the strong product, a denser graph than the cartesian product.

Recall that in the strong produet GeH two vertices (u;,v;) and (4., v.)
are adjacent if and only if: (a) u, = u, and v, is adjacent to v, in H, (b) %, is
adjacent to w, in G and v, = v,, (¢) %, is adjacent to w, in G and v, is adja-
cent to », in H.

Theorem 6. Let G and H be connected graphs and L = GeH their strong
product. Then

max {g.(G), ga(H)} < gu(L) < gu(G)- ga(H) .

Proof. As in Theorem 5 the left inequality follows from the fact that
our graphs @ and H are induced graphs of L. To prove the right inequality
consider the following expression for distance in L

dL((ul) ), (U2, 9,)) = max {da(un Us)y An(vy, '”2)} .

Thus if X and X, denote two optimal A-colourings of G and H respec-
tively, we can A4-colour L by the function f(u, v) = (X¢(u), Xu(v)).
This gives the right inequality.
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Abstract

Let A be a set of natural numbers. The A-chromatic number of a graph G, g(G), is

the smallest nwmber of the colowrs to colour the vertices of G so that the distance between
any two vertices with the colour is not in A. Here the A-chromatic number is determined
when A s the set of even integers or the set of odd integers, and G is a cycle or a multi-
partite graph. Other resulls are given.

L






