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GIOVANNTI CIMATTI (*)

On the potential distribution

in a high vacuum diode (**)

To professor Granrraxco Carriz for his sixtieth Birthday

1 - Imntreduction

The electric potential V in a high vacuum diode is given (see Appendix)
by the Child-Langmuir equation [2], [10],

(1.1) AV:£ K=£(

Vi P )

Sk

where m and ¢ are respectively the mass and the electron charge, ¢ is the
permitivity and J the current density.

Let £ be an open, bounded and doubly-connected subset of B2 with bound-
ary 0Q € C® such that 02 = I1U Iy and Iy, N I, = @. I represents the cross-
section. of the electrons emitting cathode, whereas I, is the cross-seetion of
the anode. It is assumed that V=0 on I} and V=V_,>0 on I,. The so-
Tution of (1.1) with these boundary conditions gives the potential distribution
in the diode.

The purpose of this work is to study the following more general elliptic
boundary value problem

k

(1.2) ———Au::wu in £, =0 only, wu=g onl,,

(*) Indirizzo: Dipartimento di Matematica, Via Buonarroti 2, 56100 Pisa, Italy.
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where u >0, ke R* and ¢ is a function of class C*() positive on I',. The
main feature of interest in (1.2) is that the left hand side of the equation is
only defined for # > 0, becoming infinite when « — 0. Problems of this type,
with singular nonlinearities, have been studied in [4], though the results there
do not cover completely the present situation.

For a somewhat related work we refer also to [14], where a wvariational
approach is used for a problem similar to (1.2).

In this paper we show (Theorem 2.2) that (1.2) eannot have (positive)
solutions if 4 = 1. The main result is given in Theorem 3.1 where assuming
0 <p <1, we prove the existence of a negative number » such that (1.2) is
solvable if % > » and has no solutions when &k < x.

2 - Nonexistence of solutions

Let g, = sup {g(@), # € I';} > 0. On multiplying (1.2) by 1/g;, we can always
suppose, after redefining k, that g <1.

First of all we state the following easy consequence of the results of G. Gi-
raud [6] and G. Prodi [15] on the linear Dirichlet problem with left hand
side singular on the boundary. We use the notation d(») = dist(z, [3), 2 € £,
@ = (g, L,).

Theorem 2.1. Let w(z) be given by
(2.1) Aw =0 in 9, w=10 on [y, w=g on I,
and consider the problem

k
(2.2) ——Av:zv—; n 0, v=0 on I}, v=g¢ on I,.
If 0 < u<< 1 there ewists one and only one solution of (2.2) of class Cb-#(Q).
If 1< 1 <2 the conclusion continues to hold, except v is in O%*#(Q).

Proof. By the maximum principle in Hopf’s form [16] we have dw/dy >0
on I} (» is the interior normal). Hence near [}

(2.3) wd(@) < w(z) < pd(x) f>a>0.

When 0 < <1, it follows by a theorem of G. Giraud (see [6], p. 50) (*) that

the solution of (2.2) exists and belongs to Cv-#(Q). If 2>pu=1 we can
invoke the results of [15], which by (2.3) apply directly to (2.2).

(*) Compare also [12], p. 100.
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Strictly related to the previous theorem is the following

Lemma 2.1. ZLet w(z) be as in Theorem 2.1 and consider problem (2.2)
with k< 0 and 0 < << 2. If 1< u< 2, the solution v(x) of (2.2) becomes neg-
ative near Iy for every k << 0, however small in modulus. If 0 << u <1 there
exists a number k; << 0 such that v> 0 in Q when k> k,.

Proof. Let us consider the conformal mapping f which maps 2 one-to-
one onto D= {X = (X;, X,); 1<|X|=< ¢}, a mapping which surely exists by
virtue of the Riemann theorem. Also, recalling that 802 € 02, a result of O. Kel-

log (see [11], p. 116) implies 0 < AL |f'(2)|£A. Let g, = sup {g(=); v € I}
and g, = inf {g(x); e [,}. Consider the problems

(2.4), Adw,=0 in Q, w;, =0 on [}, w,=¢, on [, (i=0,1).
By the maximum principle we have w, < w < w,. Let

(2.5), —Avizui—c”in!), v;=0 on Iy, w;=g¢,onl, (73:0,1).

The maximum prineciple again yields v, = v < v,. If we restate (2.4), in D,
we easily find the corresponding solutions

Wi(os0) = g:logg,

where g, 0 are polar coordinates in the plane X;, X,. Transforming equations
(2.2) and (2.5), into D they become respectively

k

(2.6) —~AV=W1'11D, V=0onpg=1, V=gonp=e,
k . ;
(2.7), _Avi:W in D, V,=0onp=1, V,=g,onp=ec¢.

Let 2>u =1 and eonsider

b in D, V¢=0wo0nyg=1, *= g, on g = 6.

. AV §
(2.8) Ag: logo

The funection V* supplies an upper barrier for (2.6) i.e. V¥ =V, = V. The
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solution of (2.8) ean be computed explicitly, namely

V*(e, 0)

20

2
n!

_Z\T _N'
=7 (e*—1)+logo [g: + 5 (1—e*)+ X

P

&
‘_)J’Il

IOgnQ)] y

HM8

— N(loglog o+ 3
1

nln n

where N = k/g,4d. Moreover V* is negative near p = 1 for all k<< 0, how-
ever small in modulus.

Let 1> x>0 and consider the lower barrier for (2.6) given by

9, ——AV*z——-—Zﬁ-———inD, Vi=0onpg=1, Vy=g, onp=ce.
(2.9) 2go logr g

We have

© on—1
Vile,0) = Bloge — M ‘? (n—1)Hn—u)(n +1—u)

(log g)rt—#,

where M = —k~ and

Ags

211—1

B =g+ M‘?(%——l)!(n——#)(”*f—l—ﬂ).

211-—1

D — p)(n 41— p)

Hence if 0 >k>k with k=— g} [Z " -,
“~ (n —

we have V= V,>0. This completes the proof.

Theorem 2.2. If k<0 and p=1, problem (1.2) has no (positive) so-
lutions.

Proof. Let w(z) be given by (2.1). If u(z) iz a positive solution of (1.2)
then, by the maximum prineiple, 0 < v < w < 1 in £. Consider the problem

k
(2.10) ——Aﬁ:ZU—EinQ, T=0on Iy, #=gonl,,

where 1= f<u and < 2. This problem has a solution by Theorem 2.1,
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and by Lemma 2.1 it is negative near ;. Morecover @ > u. Hence % is neg-
ative somewhere in £, which is impossible. This completes the proof.

Theorem 2.3. Lot 0<u<1. There ewists a number k such that (1.2)
has no solution when k< k.

Proof. Let w(z) be solution of (2.1). Suppose u(x) is a solution of (1.2)
with & < 0 and consider the problem

—Ag=1% in 2, g=0 on Iy, g=9g on I,.

Sinee kjur <k we have ¢>wu. Now if [k|is sufficiently large, ¢ assumes
negative values in £. In fact let ¢ be given by — Adp = 1 in £, ¢ = 0 on 00.
Let @(Z) = sup {p(x); ze }, Te 2. We have ¢(T) = w(T) + k() <1+ kp(Z).
Hence if &< —1/p(Z) problem (1.2) has no solution. V

‘When k> 0 we can give the following result of existence and uniqueness.
For the idea of the proof see Theorem 1.1 in [4].

Theorem 2.4. If k>0 and 0 << pu << oo there ewisis one and only one
solution to problem (1.2).

Proof. Let u,, u, be solutions to (1.2). Put 4 = u, —u, and 4 = {xe Q;
() < 0}. Since in 4 kfu¥ < kfu¥, we have — A4 > 0. Moreover 4=0 on 04
hence 4> 0 in 4 so that 4 = 8. It follows u, = %, in Q. Similarly we can
prove u, < u#,. Hence u, = u,.

k .
(2.11) —Auezm in 2, w,=0 only, wu,=g¢g onl,.
For all £ > 0, - = w given by (2.1) is a subsolution for (2.11). A supersolu-
tion w4 is obtained as solution of the problem

——Au+=8—” inQ, wu,=0 only, wu, =g onlj.

Since %y > u—, (2.11) has a solution by a theorem of Amann [1]. Uniqueness
for (2.11) can be obtained exactly as before. :

Let 0 <e<<d. We prove that (1) us> us and (ii) ¢ + ue < 0 -+ us. Put
w = ue—us and B = {we Q; v'(x) < 0}. In B we have J/(us + )% > T (us -+ 6)*
so that — A%’ = 0 and by the maximum principle %' > 0. Hence B = @ which
proves (i). Let now % = (us + 6) — (ue + ¢) and € = {we Q; 4(») < 0}. Since
— A% = kf(us + 8)* — kf(ue + &)t >0 in C and % =0 on 9C we get & >0
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in €. This proves (ii). It follows that wu,(x) converges uniformly to a function

u(x) € C°(2) such that w = 0 on I'; and » = g on [,. To see that — Au = kju#
and we C¥Q) we can proceed as in [4].

Remark. Suppose the assumptions of Theorem 2.4 hold true. Let
0 <u <1 and consider the problem

k

*"A"—‘”_‘ﬁ in®, #w=0 only, %=g¢g onl,,

where w is given by (2.1). By the maximum prineciple we have w< u <%
and by Theorem 2.1 % e Cv#(Q). Hence the interior normal derivative on
I of w exists and satisfies 0 < dw/ov < o%/0v. Therefore near I; we have
ed(w) < u < fd(z), f>o>0. Again by Theorem 2.1 we get u e Cv1-4(Q).

When x =1 we can apply with minor changes the results of Theorems 2.2
and 2.5 of [4] obtaining u e C>¥a+u( ().

3 = The case 1 < 0

In this Section we treat the case of physical relevance, k¥ < 0. Our main
result is the following

Theorem 3.1. There ewists a negative number » such that:

(1) if x<k =0 equation (1.2) has at least one solution;
(i) 4f — oo <<k <<= problem (1.2) in mot solvable.

The proof of Theorem 3.1 is based on the following lemmas.

Lemma 3.1. Let us consider the following one dimensional version of
problem (1.2)

(3.1) —2'(s) = (

where 0 <y <1, L>0, >0 and 1< 0. If f<f, where

T Ly 2t .
(3.2) = [\—/—QL—(;—M ] ’ and a = #z_ll

b

problem (2.1) has no solution. If = f then (3.1) has a unique solution, which
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when B = B, is given by
\/&" 1 2f(i+u)
Z(S)——[‘E}:‘( + u)s] .

Proof. Sinece 2> 0 in (0, L), we have 2">0. It follows 2'(s)>0,
se (0, L) and

(3.3) # = (ag*—+ + O)F,

where C is a constant of integration certainly nonnegative. Integrating (3.3)
by separation of variables, condition #(L) = § becomes

s dz
(3‘4) @(C) = L with @(O) :OJ‘ m .

It is easy to verify that (3.4) has one and only one solution if # < f and
no solution when > f.

Lemma 3.2. Let 0 <L, <L, and w; be defined by
Aw, =0 in Q, w;=0 on Iy, w, =L, on I, (i=1,2).

Then

ow; 0w,
(3.5) 0<% <%

where v is the imterior normal on I.

Proof. By the maximum principle w, > w, and since w; = w, on [,
we get (3.5).

Lemma 3.3. Let 0<pu<1and k<<O0. If|k|is sufficiently small there
exists a weak subsolution for (1.2) i.e. a function u— which satisfies

(3.6) w. e B Q) () wu_—geHyL), wu_>0 in Q,
1 .
(3.7) TTEGL”(Q) for a certain p > 1,
(3.8) JVu_-Vode <[k 2w for all v e HYD) v=0.
2 o Uk

(*) HY, H} are the usunal Sobolev spaces, see e.g.[7].
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Proof. Let w(z) be given by (2.1). By the maximum principle in Hopf’s
form we have cw/0y>0 on [3. Suppose 0 <L < g, and define Q:{m € L2;
0<w@w) < L}, Iy =28Q —1Iy. Clearly I'N I, = 0, and w = L on I’,. Choose
L so small that

(3.9) |Vw|Zm>0 in Q.

By the implicit function theorem, [, which is defined by w(z,, #,) = L, is a
0! curve. Let us consider problem (3.1) with L as above. Take I and § in
Lemma 3.1 such that § > § and put p(@) = 2(w(x)). For every f and I (8> f),
2(s) tends linearly to zero as s — 0. Hence 1/(pﬂeL”(.Q) with p > 1.

By (3.1) and (3.9) we have in £

k
(8.10) —-A<p=——z”IV'w[2——z’Aw§§; k=1Im.

Define Q% = Q —  and consider the problem
AV =0 in 0%, Y= on [}, Y=g onl,.

Let » be the interior unit normal to I, with respect to % We have

0 , ow
(3.11) 5% =2(L) - on [;.

Now if f (and correspondingly ) are taken sufficiently small, 2/(L) and by
(8.11), 2p[on can be made arbitrarily small. Since ¢¥fon >0 on I; we can
choose f and ! so that

L
a—qp<g on [I5.

(3.12) on on

Take now the function @ defined by
(3.13) —AQ = —g in Q% O = 8.0+,

and put & =¥ 4 6. Since |VO| tends uniformly to zero as & — 0, recalling
(3.12) we have

0P _ p

(3.14) o Iy,



[9] ON THE POTENTIAL DISTRIBUTION IN A HIGH VACUUM DIODE 371

and ®>1>0 in 0% when ¢ is sufficiently small. Hence taking |k| still
smaller if necessary, we can write

k . y
(3.15) —62=—-—A(p§-@7‘ in 0%,

Let ve Hy(fR), v=0. By (3.15) we have

oD v
. Vo ds o ds < Il — da
(3.16) Q£ VO -Vodax +1{'L an ds < Iﬂi 5 de ,
and by (3.10)
o v
7 Vo -Vode —fv —ds = | — da .
(3.17) !12 P PI on =]

The integral on the right hand side of (3.17) exists since (p—ﬂeLT’(.Q), p>1
and v € Ly(£2), g<< oo by the Sobolev’s inbedding theorem. Put

(@) weQ,
D() we %,
Adding up (3.16) and (3.17) and recalling (3.14) we obtain (3.8).
Proof of Theorem 3.1. If |k| is sufficiently small, say & = k,, by

Lemma 3.3 there exists a weak subsolution for problem (1.2), .
Lot us consider the sequence of linear problem

1

(3.18) %an—gEHYLD), gVum-Vvdw = | da for all ve H{(Q),

2 Yy

where w is given by (2.1). The sequence {u,} is well defined in H(R)
and wu, > u— for all m. In fact we have %, > u- in £. Moreover suppose
Up—y — g € Hy and u,,— > u—. Subtracting (3.8) from (3.18) we get

V(U — )" Vodz = 0 for all veHY(Q) v=0.
o 0

Hence by the weak maximum principle ([7], p. 39) we have w, > u-.
Again by induction we can prove that {u,} is nonincreasing. Putting
v = U, —w in (3.18), we obtain

J 1V |2 A = [Vt [0 X V032 A+ Too 0/l | 2.

2
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It follows that {um} is «a priori» bounded in the H'-norm. Hence we can
extract a subsequence still denoted w,,, weakly convergent in H to a function
% € H* such that w —ge H;. Moreover %, converges in L to w. Thus

Bm w,,(#) = inf {u,(2); m € N} = u(z) .
Pick v € Hy(£2) and let v = v+ — v, »+ = sup {v, 0}, v~ = sup {— v, 0}. The
sequences {u*/u%} are nondecreasing. Moreover

.

+ +
lim @——=v-—eL1(.Q).

mow U U

Hence by B. Levi’s Theorem

i L a
(3.19) m J'fz_ﬁ‘ ‘%_’Jﬁ z.

m—>®o Q2

Passing to the limit in (3.18), we obtain
gVu-V'v do = 7(0!2] % da for all ve HY(D).

Since kofur € L*(2), p > 1, we have [9] w € C°(2) N ¢°(L). On the other hand
w=u=u-. Hence near I} we have ad(r) = u(z) = fd(x) with o> > 0.
Thus by Theorem 2.1 we obtain u e Cv1-#(0).

Let now » be the infimum of all & such that one can solve (1.2),. By
Theorem 2.3 0> ky=x>—oco. Suppose » <k <0. Clearly there exists
k* <k such that (1.2).« has a solution u, and — Au, = k*/u” < kju”. Hence
#* is a subsolution for problem (1.2),. Since w given by (2.1) is a supersolution,
we conclude that (1.2), is solvable. This completes the proof.

Remark 1. One question arises naturally: why problem (1.2) may not
have solutions when a potential distribution exists with the same values of
parameters? To answer it is necessary to remind that equation (1.2), although
sufficient for many practical purposes [5], gives a rather rough picture of what
really happens. Various other aspects (in particular the temperature) should
be kept into account to get a more accurate model. We refer to [13] for a
complete discussion of physieal background and history of this problem.

Remark 2. In[l4] it is proved a result closely related to part (i) of
Theorem 3.1. This is done (see first part of Theorem II in [14]), when £ is
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a disk of R, but the argument can be extended to the case of an arbitrary
connected domain.

The technique of the proof used here for a doubly connected domain is
however completely different.

Appendix

A diode is an electron tube consisting of a heated cathode which operates
as an emitter of electrons and an anode (or plate), serving as a collector.
Both electrodes are placed in an evacuated glass envelope.

‘When the anode is made positive with respect to the cathode, electrons
flow between the electrodes and through an external cireuit. The cloud of
electrons leaving the cathode influences the electric potential inside the tube
which is given, using the notations of the Introduction by

(a) AV = —ple.

To express the charge density p in terms of ¥V we equate the kinetic energy
acquired by the electron as it moves through the field, to the potential energy
change i.e.

(b) Vg = mu?/2,

where u is the velocity of the electron when the potential is V. We assume
% =0 if V= 0. Moreover we have

(6) J=—ou,

which is a sort of continuity equation. Eliminating ¢ and « in (a), (b) and (e¢)
we get equation (1.1).
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Sommario

In questo lavoro si studia wn problema al contorno elliltico nonlineare per I'equazione
di Child-Langmuwir che fornisce il potensiale in un diodo ad alto vuoto. Vengono dati vari
risultati di esistenza e unicitd della soluzione.



