Riv. Mat. Univ. Parma (4) 11 (1985), 161-179

MANUEL DE LEON ana MODESTO SALGADO (%)

G-structures on the frame bundle of second order (*¥)

Introduction

The purpose of this paper is to describe a procedure which allows the
construction of a great variety of G-structures on F:M, the frame bundle of
second order of an n-dimensional manifold M endowed with a connection w
of order 2. The basic idea of this procedure is the following: model structures
on R, gl(n) and S2(n) are considered and, by means of the connection w, are
translated to I'*M. A similar treatment for the frame bundle FM of M and
a linear conneetion on M was considered by Cordero and one of us in [1] and
by Terrier in [12] in the case of almost complex structures. Actually, both
constructions are related.

The paper is structured as follows. In 1 and 2, we recall, for later use,
the definition and properties of the frame bundle of the second order F:M
and of connections of order 2 on M. We notice that standard horizontal vector
fields for connections of order 2 can be introduced and that they are essential
in our study. In 3, we consider the absolute parallelism on F2M associated
to  and the corresponding frivialization of the frame bundle FF2M, which
permits to get, for any Lie subgroup G c Gl(n + n* + n*(n + 1)/2), the w-
associated G-strueture P on I23. When G is assumed to be the isotropy group
of a point & e F with respect to a linear representation g on a vector space I,
then P can be defined by a differentiable tensor # on FF:M of type (g, F).
And when appropriate and particular choices of F, % and § are made, wo can
give a precise description of the tensor field on F:M associated to . In 4
and 5, we study the particular case of tensor fields of type (1,1) on F2M and

(*) Indirizzo: Departamento de Geometria y Topologia, Facultad de Matematicas,
Universidad de Santiago de Compostela, Spain.
(**) Ricevuto: 5-VIII-1983.
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some examples are given. Finally, in 6, we discuss the case of tensor fields
of type (0, 2); particularly, almost symplectic and Riemannian structures de-
serve our special attention.

1 - The frame bhundle of the second order

In this section, we recall, for later use, the definition and some properties
of the frame bundle of order 2. Details can be found in [4], [6], [8] and [10].
Let M be an n-dimensional manifold. If U and V are two neighborhoods of
the origin 0 of R», two mappings f: U — M and ¢g: V— M are said to define
the same #-jet at 0 if they have the same partial derivatives up to order r
at 0. The »-jet given by f is denoted by j;3(f). If f is a diffeomorphism of a
neighborhood of 0 onto an open subset of M, then the r-jet ji(f) at 0 is called
an r-frame at @ = f(0). Clearly, a 1-frame is an ordinary linear frame. The
set of r-frames of M, denoted by F’M, is a principal bundle over M with
natural projection zr, 7" (ji(f)) = f(0), and with structure group G7(n) which
will be desecribed next.

Let G7(n) be the set of r-frames §7(g) at 0 € R*, where g is a diffeomorphism
from a neighborhood of 0 in R* onto a neighborhood of 0 in R*. Then G7(n)
is a group with multiplication defined by the composition of jets, i.e.,

75(9)35(9") = Jglgog’) .
The group Gr(n) acts on FrM on the right by
io(1)-Gs(g) = dolfeg)  for ji(f) € I"M, fi(g) € Gr(n) .

Clearly, 7 M is the bundle of the linear frames over M with group Gi(n) = Gl(n)
and projection 7' = n. From now on, we shall consider only F*M and F*M
and denote by x} the natural projection F>M — FM, 7}(53(f)) = 75(f)-

For any coordinate system in M, (U, #?), we consider the induced cooxrdi-
nate systems {FU, («!, X{)} and {F*U; (#%, X}, X})} in FM and F>M, res-
pectively, where X} = X7 .

We have a natural isomorphism G%(n) =~ Gl(n) x 8*(n), where 8S2(n) is the
set of symmetric bilinear forms on R», multiplication on the right being given
by (4, )+ (B, f) = (4B, ao(B, B) + Aof). Then, the Lie algebra g*(n) of G2(n)
can be identified with ¢l(n)@® S%*(n), with a bracket product given by

[(4, «), (B, ﬂ)]:([A7 B}, Aof—pBo(I, A)—fo(4, I)—-(Booc——oco (I, B)—ao (B, I)))7

where I is the unit matrix.
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With these identifications, the adjoint representations of G*(n) in a(n)
= R*@ gl(n) is given by

Ad®(4, a)(v, B) = (Av, G(v) A~ +~ ABA-Y) ,

where &: R* — gl(n) is the linear map defined by &(v)(w) = afv, w), and the
adjoint representation of G%(n) in g*(n) = gl(n) @ 8%*(n) is given by

Ad(4, o)(B, ) =(ABAY, oco(4~1, BA™)
+ ao(BA-t, A)—ABA-toqo(A1, A~1)+Aofo(4-1, A7) .

From now on, we shall denote by {#;}, {Ei} and {E}},1,j, k=1,...,n, B, =E,
the natural bases of R», gl(n) and S2(n), respectively. Sinece G*(n) acts on F>M
on the right, every element (4, «) of the Lie algebra g(n) of G%(n) induces a
vector field A(4, «) on F:M, called the fundamental vector field corresponding
to (4, «). So, the vertical subspace at any point p € #2M can be decomposed
as A(gl(n)), D A(8*(n)),.

The canonical form 0 of F*M is an a(n)-valued 1-form of type Ad?G2(n)
and satisfies 0(A(4, «)) = A. Let 0 = 0_, + 0, be the decomposition of 0;
then, 0, is an R*-valued 1-form and 0, a gl(n)-valued 1-form on F2M. We have

02(M4,0) =0, Oo(A(4,0)) = 4.
Moreover,
(1.1) 0= (75;)*6 3

where § is the canonical form of FM. With respect to the natural bases, we
shall put

O =0F,, 0,=0F.

2 « Connections of order 2

A connection [I" in the bundle F2M of 2-frames of M is called a con-
nection of order 2 on M. Let w be the connection form of the connection I
Then o can be decomposed as w=w,-+w,, where w, is a gl{(n)-valued 1-form
an w, an 8%(n)-valued 1-form on F2M. Since w(A(4, «)) = (4, a), we have

wo(MA, ) =4, o (M4,a) =ca.
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With respect to the natural bases, we write

wo=w;B}, =, B, , where o =i, .
For any 2-frame p on M, (0_,), gives a linear isomorphism of the horizontal
subspace H, at p onto R". Thus, we associate with each £ € R* a horizontal
vector field C(£) on F*M as follows. For each p € F*M, C(£), is the unique
horizontal vector at p such that (6_;),C(&), = &
We call O(&) the standard horizontal vector field on F2M corresponding to &.

The following proposition is easily proved.

Proposition 2.1. The standard horizontal vector fields have the following
properties

1) By, C) = 0(472&)  for (4,0) € G(n) and &€ R,
In particular,

RO =0 for ae8%n).

(.3

(2) If &£ 0, then C(E) never vanishes.

Proof. (1) follows from the fact that if X is a horizontal vector at p,
then B, X is a horizontal vector at p(4, «) and 0 is of type Ad®G*(n). To
prove (2), assume that (&), =0 at some point pe F2M. Then 0= (0_;), C(§),= &.

Proposition 2.2. If A4, «) is the fundamenial vector field corresponding
to (4, ) € g*(n) and if C(&) is the standard horizontal vector field corresponding
to & R*, then [A(4,a), O(&)] = C(AE).

In particular, [AA, O(&)] = C(AE), [Ax, O(&)] = 0.

Proof. Let (a;, «;) be the 1-parameter subgroup of G*(n) generated by
(4, ), a;= exptd. Then

[A(A, o), O(&)] = lim = [0(E) — Rigywp O(E)]

0 ¢

= ljm% [C(&) — C(a;28)], by Proposition 2.1.

=0
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Since & - C(£), is a linear isomorphism of K* onto the horizontal sub-
space H, at p, we have

lim 7 [0(6) — Ola78)] = O(lim (¢ — a776)) = O(4E)

Let O= DO, £2 = Do be the torsion and curvature forms of I, respectively.
Then O is a tensorial 2-form of type Ad®G@(n) and £ a tensorial 2-form of
type AdG(n). Consequently, 0 (vesp., ©) can be decomposed as O=0_; -6,
(resp., 2 = £y + £2).

A simple caleulation shows that

@___1 == D@_l ] @0 _ .DOO 9 ‘QO = .Dwo 3 Ql = .le .

Theorem 2.3. (Structure equations) Let w, @ and 2 be the connection
form, the torsion form and the curvature form of a connection I' of order 2 on I,
respectively. Then, we have:

1st structure equation

d0_o(X, ¥) = — }{oo(X) 0_(Y) — (X)) 0_4(X)} + OL(X, X) 5
2nd structure equation
do(X, ¥) = — jloX), o(¥)] + (X, ),
where X, Y e T ,(F2M), pcF*M.

Proof. The second structure equation can be found in [7] for an arbi-
trary connection on a principal bundle. To prove the first structure equation,
we congider the following three special cases:

(1) X and Y are horizontal. In this case, we(X) = wo(¥) = 0 and the
equality reduces to the definition of @_;.

(2) X and Y are vertical. Let X = A(4, &), ¥ = A(B, ) at p. Then

2 d@_l(X, Y) = Z(Ar «) 9—-1(1(B7 /3)) - MBa /3) 0—1(;“(A7 “)) - 0—1[1(*’-41 o), A(By ﬂ)]
= 0-1(;‘[(447 o), (B, «3)]) =0.

On the other hand, 0_,(A(4, «)) = 0_;(A(B, f)) = 0 and O_,(M{4, «), A(B, f)) = 0.
(3) X is horizontal and Y is vertical. We choose (4, «) € g2(n) and £ € R»
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such that X = C(&),, ¥ = A4, «),. Then
2d0_y(X, Y) = O(&) 0, (A4, «)) — A4, &) 0_,(C(&)) — O_,([C(&), M4, «)])
= 0_,(0(4§)) = A&
by Proposition 2.2. On the other hand, O_(X, Y) = 0, w,(X)0_(¥) = 0 and
0o X) 0_4(X) = 0o(M4, @) 0_1(0(E)) = AE.
With respect to the natural bases, we write

0,=0E, 0,=0E, 0,=06F, 0,=6L,

3

wo= By,  ov=opll, Q=OQF, O=0H,
where ), = w;;, £, = £,. Then the structure equations can be written as
1) 46 = — wiAG + O,
(2) doj = — A0} + 2}, do,=— oA}, + 0jA0}, + A0 + Q5.
We also write the structure equations in the following simplified form
(1) dO_, = —wAO_y +6_;, (2) df = —owAow + 2.
Corollary 2.4. For a connection of order 2 on M, we have
[0y, C.] = —2C00_4(0,, C,) —2202(C,, Cy)
for any standard horizontal vector fields C, C, on F*M.
Proof. By using the first structure equation, we have
dA0_,(04, C,) = ${0,0_4(C.) — C, 0_4(0,) —0_,[C, C.1}
=—3%0_,0, 0] = 6_(0,, (,).

On the other hand, from the second structure equation, we obtain

do (0, 0s) = {C,0(0s) — Cyo(Cy) — w[Cy, .1} = — Low[0,, C,] = — Q(0;, C,).
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Taking into account that CO_, + Aw =1, we have
[0y, Co] = C0_4[Cy, 0] + Aw[0y, C,] = —20_4(0y, C,) — 2202(0,, Cy) .

Let I" be a connection of order 2 on M. Since the natural projection }:
M — FM is a homomorphism of principal bundles over the identity of M
and the associate homomorphism is the natural projection G*(n) — Gl(n), the
connection I” defines a connection in FM, that is, a linear connection I" on M.
We call I" the linear connection on M induced by I. If &, £ are the connec-
tion and curvature forms of I', then

(2.1) () D = wy, (A)*D=20,.

Let 14 (vesp., B(&)) be the fundamental vector field (resp., the standard
horizontal vector field with respect to I') corresponding to A4 € gi(n) (resp.,
£ e R*). A simple calculation shows that 72A(4, a) = 14 (vesp., n:0(£) = B(&)).

Moreover, if @ is the torsion form of I, it is easy to verify that

(2.2) (#)*0 =06_, .

3 « @-structures on the frame bundle of the second order

Now, suppose we are given a connection I” of order 2 on M with connec-
tion form . Then, the family of vector fields {CH;, AE}, AH}} defines an
absolute parallelism on I2M associated to the connection /. This parallelism

allows to define a trivialization of FF*M, the frame bundle of F2M,
v: M X GUN) - FFM ,

where N = n 4 n* 4 in*(n 4 1), by setting (p, 4) = P4, p € F*M, A € GI(N),
Py being the linear frame of T (F2M) given by Fy = {(CE,),, (AE}),, (AEL),}.

Then, given a Lie subgroup & c GI(N), we may consider a @G-structure on
the manifold F*M given by the principal bundle Pg = 7(F'*M x G).

Def. 3.1. Py will be called the w-associated G-structure on F2M.

Let I' be the linear connection on M indiced by ['; then the family of
vector fields {BE,, XE;} defines an absolute parallelism on #M which permits
to define a trivialization of FFM, the frame bundle of FM, 7: FM X GI(N)
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~>FFM, where N= n -+ 22, in such a way that the following diagram is
commutative

PN X GUN) ——s PF=M
Voo oz v
FM X GUN) > IFH

where the vertical arrows are the natural ones.

Then, if G c Gi(N) is the natural projection of ¢ c GI(WN), the G-structure
Py = v(FM x @) on F*M projects onto the G-structure P =t M x@) on
M, called &-associated in [17.

Remark. Obviously, if Ps is integrable, so is P;.

Let # be a finite dimensional real vector space, g: GUN) — GI(F) a linear
representation and G, c GYN) the isotropy group of # e F. Then, we define a
differentiable tensor i: FF*M — F of type (g, F) by setting

(3.1) D) = od4na  PeFM,

where 4 € GI() is the unique element such that § = Fo4. Obviously, I takes
its values in F. = {g(d)@#/A € GUN)} and therefore {*(a) c FF:M is a prin-
cipal subbundle with structure group G.. Moreover, since (@) = PG;’ we
have proved

Theorem 3.2. With the notations above, the w-associated G~-structure on
M is defined by the differentiable tensor T given by (3.1).

Sections 4, 5 and 6 of this paper are mainly devoted to the construction
and study of some particular cases of this general situation.

4 - @-structures on I2}[ defined by tensor fields of type (1,1)

Let us consider F = Hom(R¥, RY) ~ (R¥)*® R¥ and let §: GI(N) — GU(F)
be the canonieal linear representation given by §(4) = A#d-1, 4 e F, A € GIN).
Then, there exists a one-to-one correspondence between G--structures on F*M
which are defined by differentiable tensors { on FIF*M of type (g, Fy and
F--valued, G~ being the isotropy group of % e F, and the tensor fields J on

I?M of type (1,1) given by

(41)  JX) = pUp pX), Xel,F*M, pel*M, Pea(p).
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In the sequel, we shall be interested only in those G-structures on F2M de-
fined by tensor fields of type (1, 1) and which can be modelled on some spe-
cial structures on the vector spaces R, gl(n) and S%(n) and which are, at the
same time, w-associated in the sense deseribed above.

Then, if we consider the canonical isomorphism of vector spaces RY ~ R»
XR¥ X R o R gl(n) X 82(n), put F= (R)*@ R, I'= (gli(n))* @ gi(n),
F" = (8%*n))*® S(n), denote the canonical representations by o: Gl(n) — GUF),
o': Gl(n*) — GUE'), o": Gl(n*(n + 1)/2) — GUF") and the canonieal injection by
jt GUn) X GUn?) X Gl(n*(n + 1)/2) — GUN), we have foj = o@D o' D o”. Conse-
quently, if we F, w'e I', w'e F" and if we take @& = u + u' -~ u’e F, we have
F,®F,@F,cF, and j(¢,xG, xEG,)cE-.

Now, let 7 be the differentiable tensor given by (3.1) which defines the
w-associated G@-structure on F*M; then, we have

Theorem 4.1. For any XeT,F°M and any p € M
To(X) = (Cu((61), X)), + (20 ((00)g X)), -+ ((P0" (1), X)), that is
(4.2) J= Cub_y + ' w, + " wy .

Proof. The result follows directly from (4.1) taking into account that
Po(§, 0, 0) = (0£),, Do(0, Ay 0) = (}‘A)m Do(0, 0, &) = (ZOC),,, & ER"’ A Egz(”),
o €8%(n), and that ¥P) = 4 = u + v’ -+ u".

We remark that J is 0-deformable in the sense of [9] because, for any
p € F:M, J,is expressed with respect to the linear frame @, at p by the matrix

u 0 0
( o % 0 ),
0 0 u’

which does not depend on p. Moreover, rank J = rank « + rank ' -~ rank «”".
As well known, we have

Theorem 4.2. The w-associated G-structure on F*M defined by J is in-
tegrable if and only if its first structure tensor vamishes idenmtically.

Next, we shall determine the Nijenhuis torsion N- of J since the vanishing
of N is a necessary, and, in some cases, sufficient condition for the integra-

bility of J. To carry on with our work, we need

Det. 4.3. For each ne AXFM, V), a 2-form on I*H valued in a vector

12
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space ¥, and Jy: V-V an endomorphism of V, let j € A*(F*M, V) be defined by
X, Y) = 2{—nJX,JY) + Sy X, ¥) + Ipy(X, JX) — J39(X, X)} ,

X and Y being arbitrary vector fields on M.

Then, we have

Theorem 4.4. Let w be a connection of order 2 on M and let J be the
tensor field of type (1,1) on F:M given by (4.2). Then

(4.3) Ny = Cab_, + Adw, + Ada,,

where A0_, € A2(I2M, R?), dw, € A(F2M, gi(n)), dow, € A*(F2M, 8*(n)) are de-
fined with respect to weF, weF', uw'el".

Proof. It is sufficient to compute N- in the following three cases:

1) X =2C¢&, Y=0&, &,6€Ry; (2) X =C§ Y =M4,a), §eRry
A eglin), aef(n); @) X =AM4,a), ¥=AUBpH), 4, B € glin), «,f € 8n).
The result follows by a straightforward computation using Proposition 2.4,
Def. 4.3 and (4.2).
According to the structure equations of Theorem 2.3, (4.3) can be written
equivalently as

———

(4.4) Ny= 0(@_1— woNB_;) + l(go — woA\wo) + /1(!31 — We AWy~ Wi Awy) .

Now, let @ be the linear connection on M induced from w. In [1], by a device
similar to that used here, a G, -structure &-associated on FM is constructed
and the corresponding tensor field of type (1,1) on FM is given by J = Buf
-+ Jw'@®. A simple caleulation proves

Proposition 4.5. The following diagram s commutative

T, (F2M) SCLINN T,(F*M)

¥ 7 ¥
To(F M) —2— T(F M)

where P = 73(p).
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Corollary 4.6. Under the same hypothesis as above, N5 = 0 implies
N.=0.
J

Proof. This follows taking into account (1.1), (2.1), (2.2), (4.3), Propo-
sition 4.5 and the expression of the Nijenhuis torsion of J, N, =Bdaj + Ld@d
given in [1].

The situation described above can be set within the following most general
framework. Let us consider H = (gi(n) @ §2(n))* & (gl(n) @ S(n)) and denote
by o: GIN') — GI(H) the canonical representation, where we set N'= a2
+ n(n +-1)/2, and by j': Gl(n) X GUN') - GUN) the canonical injection; we
have goj’= 0@ ¢. Consequently, if weF, ve H and if we take % = u + v,
we have I, ® H, C 17’; and j'(@, X @,) ¢ G~. Similarly to Theorem 4.1, we have

Theorem 4.7. The tensor field of type (1,1) on F>M given by (3.1) satisfies
T X) = (Cu((0-),X)), + (2v(,(X))), ,
Xel (M), pel*M, that is
(4.5) J= Cul_; + Jvw .

As above, the tensor field J is 0-deformable and rank J = rank u -+ rank v.
Onece again, we have

Theorem 4.8. The Nijenhuwis torsion Ny of J is given by
(4.6) Ny= 0d0_, + 2dw,

where Eb__l e A= M, R, deo € A (P2 M, gl(n) ® 8*(n)) are defined with respect
to weF, veH, respectively.
We remark that (4.6) can be written equivalently as

(4.7) Ny = C(O_; — w,A0_y) + A2 — wAw) .

Now, if we take into account that I”@ F" can be considered as a subspace
of H, putting v = w' + «", where »'€F', «"e F", the previous construction is
obtained again. Actually, Theorems 4.1 and 4.4 are a consequence of Theo-
rems 4.6 and 4.7, respectively.



172 M. DE LEON and M. SALGADO [12]
5 - Polynomial structures on F2H

Of all the G-structures which can be defined on a manifold M by a tensor
field ¢ of type (1, 1), those named polynomial structures have always deserved
special attention in the literature. In this section, according to the general
construction deseribed in the preceding sections, we shall study the existence
and some properties of those polynomial structures which can be defined on
M starting from a connection o of order 2 on M and from algebraic models
in R, gl(n) and S*n).

Def. 5.1. A polynomial structure of degree k& on a manifold M is a tensor
field @ of type (1,1) and constant rank » which satisfyies the algebraic equation

(5.1) NUe) =" + ap@*t +... + @p +a, I=0,
where I is the identity tensor field and ¢*‘(), ..., p(») and I are linearly
independent for any we M. @ is said the structure polynomial.

Now, let us consider w €F, w'€ F", w'€ F" of ranks », v’ and »", respec-
tively, satisfying
(8.2) Q) =v* +aur + oo+ au +Fa,l=0,

(56.8) Q'(w') = (w)" + a,':,(u/)"'—l + Fagw +a I =0,

i

(5.4) Q" (w")= (u")¥ + ap(u")F 14 ... + agu’ + a; I =0,

where I is the unit matrix and w*, ..., u, I (vesp. (w')*=%, ..., %', I and (u")*'-1,
..., " and I) are linearly independent. Then, % = » + «'+ u’€ F has rank
r -+ 4" and satisfies

o~

(5.5) Q@) =a* + @i + ... + @ + @ I=0,

where @ is the least common multiple of @, @' and @”, and @y ..., @, I are
linearly independent.

Then, given a connection w of order 2 on M, the w-associated G-structure
on F2M is determined by a tensor field J on F2M of type (1, 1) which, indeed,
defines on I M a polynomial structure of structural polynomial @ and with
constant rank » -+ ¢ + 7. Observe that all the results in section 4 can be
applied to this polynomial structure, but they can be significantly strengthened
if some additional assumptions on the nature of u'e I’ and '€ F'" or on the
polynomials @, @' and @” are made. For example, suppose that «'c I’ and
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w'e " are given by #'(4) = N4 and u"(x) = Noa, vespectively, N € gi(n)
being a fixed matrix; then the following lemma is immediate

Lemma 5.2. If rank N = r, then ranku'= rn and rank " = r(n(n +1))/2.

Theorem 5.3. Let: (1) welF with rankw=s and satisfying (5.2);

(2) w'eF' and w"eF" given by w'(4A) = NA and u'(x) = Noa, respectively,
for a fized matriz N € gl(n) with rank N = r and satisfying (5.3). Then

() &=+ u"elF has ranks + rn + ra(n + 1)/2 and satisfies (5.5),
@ being the least common multiple of Q@ and Q.

(i) If w is a connection of order 2 on M, the tensor ficld J of type (1,1)
given by (4.2) defines a polynomial structure on F:M of constant rank s + rn
+ rn(n + 1)/2 and structure polynomial Q.

(i) Ny= Cd0_, + A%2.

Proof. (i) and (ii) are trivial. In order to prove (iii), it suffices o recall
formulas (4.3) and (4.4) and check by direct computation the vanishing of

————— e ————
e\ Wg, wWeAw; and w; A wg.

The remainder of this section is devoted to the description of some inter-
esting examples.

Example 1. An f(3, 1)-structure on F:M(dim M = n = 2m).

0 —I,
I, o)
and Q(w) =u=0, Q'(u') = (w')2 +I=0, Q"(u") = (u")? + I= 0. Therefore =
0-+u'+u" satisfies §(f) = 4° + @ = 0 and rank @ = n* + n%(n + 1)/2. Con-
sequently, if o is a connection of order 2 on M, the tensor field J is given by
J = Ju'w, + 2" w; and satisfies J* - J = 0 with rank J = n? + n3(n + 1)/2.
Hence, J defines on M an (8, 1)-structure of rank n? 4 ni(n -+ 1)/2. Ac-
tually, we have Ny = 10; then, from the results in [5], we have

If we take # =0 and N = ( , then rank «'= n?, rank u"= n3(n 4-1)/2,

Proposition 5.4. The f(3, 1)-structure on F*M defined by J as above is
integrable if and only if o is flat.

If we consider the canonical projection operators associated to J, given
by I, =—J2, l,=J° 4 I, then L, = Iml, is the vertical distribution on F2}
and L, = Iml, is the horizontal distribution of w. Obviously, L, is always
integrable, its integrable manifolds being the fibres of F2M; L, is integrable
if and only if w is flat and J is always partially integrable since Im J = I,.
Moreover, it is no hard to see that J actually defines a framed 1(3, 1)-structure
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on F:M. Indeed CE, ..., OB, span L, and I, = Y OB, ® 0?; being 0_; = 0°E,.

Nevertheless, the structure is not normal in general as can be easily proved.
Now, we must also remark that the f (3, 1)-structure J on FM obtained by
projecting J, is, in fact, the f(3, 1)-structure defined by Okubo in [11],.

Example 2. An §(8, —1)-structure on ImM.

Take =0 and N = (é" g ), p -+ ¢ = n. Then rank u'= n? rank «"= n?

“(n +1)/2 and the structural polynomials are Q(u) =u =0, Q'(v') = (u')?
—I =0 and Q"(u") = (#")2—T1 =0. Therefore, % = 0 + u'4 u" satisfies
Qi) = @* — % = 0 and rank @ = n® + n*(n -~ 1)/2. Now, if o is a connec-
tion of order 2 on M, the tensor field J is given by J= ' we+ I"w, and
satisfies J® —J = 0, with rank n® + n%(n 1)/2. Theorem 5.4 is still valid as
well as the other results in Example 1, only making the appropriate changes.
As above, J defines the f(3, — 1)-strueture on FM considered by Okubo in [11],.

Example 3. An f(4, 2)-structure on IFM(dim M = n = 2m). Take
%n g) and N = (Iom OI’"
‘(n+1)/2 and Q(u) = ut =0, Q'(w) = (w)* + I =0, @"(u) = (u")* + I=0.
Therefore, 4 = « -+« -+ «” satisfies Q(f) = 4* + 4* = 0 and rank & = m - n?
+(n¥n+1)/2). So, if @ is a connection of order 2 on M, J given by (4.2)
defines on F*M an f(4, 2)-structure 0f~rank m +n*+ (n*(n 4 1)/2). Here, N5
is given by Theorem 5.3. Let I, = — J3, I, = J? 4 I the canonical projection
operators; then I, = Im, is the vertical distribution and L, = Iml, is the
horizontal distribution. With the terminology of [3], this structure is easily
shown to be always c-partially integrable and f¢-partial and partial integrabi-
lities are found to be equivalent and they are verified if and only if @_,(I.X,
L,Y) =0, O(,X,1,Y) = 0.

= ). Then rank # = m, rank #'= n?, rank 4"= n?

Example 4. An f(4, — 2)-structure on F?M(dim M = n = 2m). Take u
as in Example 3 and N as in Example 2. Then, for & = % -+ «'4 «’, we have
J@)y=a*— 4= 0. If w is a connection of order 2 on M, J defines on F*M
an f(4, — 2)-structure of rank m - w® + a(n 4+ 1)/2. Similar results to those
in Example 38 are valid.

Example 5. A family of examples.

Let 4 € F with rank w = » and satisfying (5.2). If we take N = u, then
% and #” also satisty (5.2) and rank «'= rn, rank v’= rn(n -+ 1)/2. Obvi-
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ously, @ = Q"= Q"= @ and, for a given connection w of order 2 on M, J
defines on F*M a polynomial structure of rank#(1 -+ » + n(n + 1)/2) and
struetural polynomial @. A direct computation shows that N- becomes sim-
pler Ny = CO_; + L.

Actually, with the appropriate choice of «, we obtain almost tangent,
almost product or almost complex struetures on M.

6 - @-structures on F2} defined by tensor fields of type (0, 2)

Let F = V*®V* V= R¥ ~ R*xgl(n) x8%n), and §: GI(N) — QI(F) the
canonical linear representation given by (g(4)@)(&, &) = (41§ A1 E),
AeGUN), dieF and £ &eV. Tt is well known that there exists a one-to-
one correspondence between the G.-structures on F:M defined by -1(a@),
f: FP*M — F being an FE—VaIued differentiable tensor of type (g, ), G- the
isotropy group of @ € F, and the tensor fields ¢ on F2M of type (0, 2) given by

(6.1) @(X, Y) =UPNp X, pY) X, YeTl,FM, peni(p), peFM.
Now, let us consider F = (R*)*® (R")*, F'= (gli(n))*® (gl(n))*, F"'=(8%(n),)*
® (83*(n))* and ¢: GUn)—~GUF), §: GU(n*) — QUEF"), o": Gl(n*(n + 1)/2) — GUE")
the canonical representations. If for any we P, w'e I, u'e F" we put 4 = u
+ ' +u'el, we have F,® F, @ F,.c F and j(G,x G, xGs) c G, j being
the canonical injection.

For a given connection o of order 2 on M, we consider the w-associated
G.-structure, which, according to Theorem 3.2, is defined by an F;-Valued
differentiable tensor on FF:M of type (5, F'); the corresponding tensor field @
on F*M is described as follows

Theorem 6.1. We have

PolX, ¥) = ""((0—1)7:Xa (0—1)11y) + u’((a)o)pX, (a)o),,Y) + u”((wl)ﬂX5 (01),Y)
X, Yel,F*M, p e B> M, that is
(6.2) @ = u(0_y, 0_1) + w'(wo, wo) + 4" (w1, ) .

Proof. The proof is similar to that of Theorem 4.1.

Next, we shall apply this construetion to two particular cases.

I- Almost symplectic structures on F*M(dim M = n = 2m).
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Let uel, w'el" and w"el” be antisymmetric and of maximal rank.
Hence, the corresponding tensor field ¢ given by (6.2) is actually a differen-
tiable 2-form of maximal rank. Therefore, we have

Theorem 6.2. @ defines on F*HM an almost symplectic structure.

We remark that, in general, if rank 4 = », rank #'= #' and rank «"= 7',
then rank ¢ = » + ¢’ 4 ¢, that is, ¢ defines on F2M an almost pre-symplectic
structure of rank #» -+ o'+ ¢,

In order to characterize the integrability of these structures, we introduce
the following definition.

Def. 63. Let ue P, w'e ', u'e F'" and o a connection of order 2 on M.
Then:
(1) if ne A(F2M, R") ﬁe/l“(l‘“M R) is the 3-form on F"M given by
37(X, X, Z) = u(n(X, ¥), 04(2)) + u(n(Y, Z), 0_(X)) + u(n(Z, X),0_4(T));

(2) if ne A (IT*HM, gl(n ), ne/P(I’M R) is the 3-form on F:M given
by 37(X, X, Z) = ' (n(X, X), wo(Z)) + %' (9(X, Z), 0o(X)) + w' (9(Z, X), 0s(X));

(3) if neA*(F2M, 8*(n)), 7€ AF*M, R) is the 3-form on F:M given
by 3ij(X, ¥, Z) = u"(n(X, X), 0:(Z)) + w"(1(¥, Z), wy(X)) + " (n(Z, X), 0:(X)),
where X, ¥, Z are arbitrary vector fields on F*M.

Thoorem 6.4. df = 2d0_; + 2dw, + 2do, .

Proof. It suffices to check the identity in the basis cases, as in the
proof of Theorem 4.4.

Now, keeping in mind the usual terminology of symplectic manifolds theory,
we have

Proposition 6.5. Let H, be the horizontal subspace of w at p € F* M and
denote by V, the wvertical subspace at the same point. Then, with respect to the

almost symplectic structure defined by § on IF*M, we have:

(1) H, and V, are symplectic subspaces of T, J*M and ¢-orthogonal.
Moreover, if we take into account that V, can be decomposed as V, = A(gl(n)),
@ A(82(n)),, then both subspaces are also symplectic and G-orthogonal;

(2) the fibres of F*M — M and F:M — FM are almost symplectic man-
ifolds;

(8) if w is flat, the integral manifolds of the horizontal distribution are
almost symplectic manifolds.
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Proof. (1) is a direet consequence of (6.2); (2) and (3) follow from (1).

Now, let & be the linear connection on 3 induced by a connection w of
order 2 on M. Then, the almost symplectic structure @-associated on FM in
the sense of [1] is defined by the diffeventiable 2-form @F=u(f, 6)+u'(®, @).
‘We have

Proposition 6.6. If ¢ is symplectic, so is .

Proof. This follows taking into account (1.1), (2.1), (2.2), Theorem 6.4
and the expression d@ = 2df -+ 2d% obtained in 1.
Proposition 6.6 follows directly from the Remark in 3.

II - Riemamnian structures on F2M.

Let uel, w'elF’' and w'e I’ be symmetric and positive definite; then,
given a connection w of order 2 on M, the associated tensor field ¢ on FM
of type (0,2) is also symmetric and positive definite; thus, we have

Theorem 6.7. @ defines a Riemannian structure on F2M.

We remark that the horizontal and vertical distributions are mutually
orthogonal.

Now, we shall consider the canonical flat connection V on F°M induced
by the absolute parallelism defined by w. Then

Vi Y = 3 (Xa')(CH) + 3 (Xa))(AE)) + 3 (Xa,)(AH},)

L) iyd:k

Y =3 a/(CH) + 3 a(AB) + > a},(AE.), af = a, on M.
5§

i 4ok
By a simple caleulation, we get
Proposition 6.8. V is a metric connection, that is, V@ = 0.

Consequently, if ¥ denotes the Riemannian connection of @, then V and V
are equal if and only if the torsion tensor 7 of V vanishes. But one easily
obtains 7' = 20d0_, -+ 2Adw; then, 7 is never identically zero; thus it is
always V = V.

To end this section, let us go back to Examples in 5.
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Examples 1 and 2 (continuation). Consider the #(3,1)-structure J on
I*M given in Example 1. A Riemannian metric § on > is said compatible
or adapted to J if HX,JY) + FJX,Y) = 0.

Let «’ (resp., #”) be a hermitian inner product on gl(n) (resp. S%(n)) with
respect to the almost complex structure on gi(n) (resp., 8:(n)) which we have
considered in Example 1. Then, the Riemannian metric ¢ given by (6.2) is
adapted to J.

A similar result can be obtained for the f(3, — 1)-structure given in Ex-
ample 2, only changing the hermitian condition with respect to the almost
complex structures on gl(n) and S%*(n) by the condition of being compatible
with the almost producr structures there.

Examples 3 and 4 (continmation). To obtain a Riemannian metric on
M adapted to the f(4, — 2)-structure J on F2*M given in Example 3, it suf-
fices to consider the inner products on R», gl(n) and S*(n) adapted to the
corresponding almost tangent and almost complex structures on R», gi(n) and
82(n), respectively. Similar considerations can be made for Example 4, only
making the appropriate changes.

Example 5 (continuation). As in the Examples above, choosing the
appropriate inner produets on R», gl(n) and 8%(n), we shall obtain Riemannian
metrics on F*M adapted to the different polynomial structures considered.
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Résumé

Dans cette article, on décrit un procédé qui permet de consirwir une grande variété de
G-structures sur T2 M, espace total du fibré principal des repéres d’ordre deux d’une variété
différentiable M de dimension n, quand il est muni d’une connexion du deuxiéme ordre.
I’idée essentielle consiste & transporter dans I'*M les structures modéles sur RB», gl(n) et
82(n) respectivement, auw moyen de la forme de la connexion.






