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Non linear vibrations of strings: the F.P.U. problem (**)

1 - Introduction

One of the first examples of a euristic study on a computer of a difficult
problem in analisys is the examination, conducted by Fermi, Pasta and Ulam
in the 50’s, of the problem of propagation given below [4], whose solutions
seem appropriate for the description of certain types of non-linear vibrations
of strings and crystal lattices

(1.1), tp— (1 + sUe)ts= 0 Y(@,%) € D = [0,1]%[0, 71,
(1.1), w(w, 0) = sin () ,

(1.1), e, 0) = 0,

(1.1), w(0, 1) = u(l, ) = 0.

Multiplying equation (1.1); by u, and integrating the result by parts under the
assumption of smoothness of the derivatives involved, the following equa-
tion is obtained

d 1 1 1 3 £
(1.2) qls Jwide 45 [(u 43 «))dz]l=0,
< 0 “ 0

(*) Indirizzo degli AA.: C.N.U.C.E., Via 8. Maria 36, 56100 Pisa, Italy.
(**) Ricevuto: 13-VII-1983.
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which assures that during motion, the total energy is conserved. If the condi-
tions of smoothness are not satisfied (1.2) does not hold. The correct relations
in the case when the first derivatives have a jump will be derived in 4.

When & = 0 (1.1) goes over into the classical linear problem of vibrating
strings. The solution is

(1.3) w{w, t) = sin (ax)-cos (nt) ,

and deseribes the first mode of vibration. Other modes of vibration are not
excited in view of the initial conditions even though they would be allowed by
the boundary conditions. During motion, all energy is maintained in the mode
in which it was initially.

For &> 0, it can immediately be seen that the solution cannot have the
same form (1.3). Omne can try to express the solution as a series

w(zw, 1) = zml a,(t) sin (naz) ,
(1.4) »

a(0) =1, a,0)=0 for m=2,3,..;

then |a,(f)| could be considered as a measure of the relevance of the n-th
mode in that instant. Thus energy appears to flow in time inbto higher modes.

At the beginning of their research, Fermi, Pasta and Ulam presumed that
the process of transfer of energy to higher modes would continue perhaps until
the energy became uniformly distributed throughout all the modes (only a
finite number was allowed by the discretisation adopted for the numerical
method chosen). Instead the approximate numerical examination lead to a
completely different result: the energy, after flowing in some of the higher modes,
seemed to concentrate again periodically in the first mode.

Deeper studies showed that this result had nothing to do with the propecties
of the solution of (1.1), but was only due to the numerical approximation
adopted. In fact, Zabusky and Kruskal and later, in a concise way, Lax [5];
proved that the problem (1.1) cannot have smooth solntions beyond a critical
instant #,. For ¢ > i,, the discretisation adopted by Fermi, Pasta and Ulam
(who tacitly assume the regularity of the solution) is not a suitable technique
for the approximate solution of (1.1).

In order to study the solution for ¢ > ¢, a weak formulation of the problem
is necessary, within which it is meaningful to diseuss solutions with discon-
tinuous first derivatives; in fact §. Antman [1] has proposed recently a weak
form of the problem of non-linear vibrations of strings which is also suitable
for the description of the F.P.U. problem.
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In this paper we present a numerical method appropriate for the approxi-
mate solution of the problem in weak form. The method uses finite space-time
elements and has been applied already with some sueceess on the numerical
solution of hyperbolic linear problems [2], [3] ; when applied to the F.P.U.
problem the method leads to very convineing results; it has allowed us also
to explore the response of strings with different tension laws.

2 - Weak formulation of the problem

Let us take a quasi-linear class of propagation problems to which the
problem of F.P.U. belongs

(2.1), Wee— F2(U) U= 0 V(&, 1) € D = [0, 1] [0, T],
(2.1), W@, 0) = uy(w) ,

(2.1), wi(®, 0) = () ,

(2.1), w(0,8) = u(l,7) =0,.

In (2.1) k*(y) is a function of class 02 with positive values for all y.
The problem (2.1) is called genuinely non-linear if

dk
dy

(2.2) >m>0,

We notice that in the F.P.U. problem when, as we shall assume, ¢ > 0, to insure
the correct sign of the coefficient of w,,, %, must be bounded from below

(2.3) Up>— 1fe .

If the problem is genuinely non-linear, no regular solution exists for ¢ greater
than a critical time ¢,, which depends on % and on the choice of the initial
conditions.

Rather it is convenient to put the problem in a weak form which is formally
obtained by' multiplying the left hand side of (2.1), by a sufficient smooth func-
tion v vanishing for t= 7T and # = 0,1 and integrating by parts over
(0,1) (0, T) (see Antmann [1]). Then one is required to find u(z, ¢) such that:

10
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(i) the equality
1 17 ir
(2.4); — [U®@)-v(@, 0)dw— [ [u;v.dodt 4 [ [ F(u,) v, dodi =0
o0

0 00

is satisfied for every function v(z,t) = @(x)-y(i), where @(z) and () are con-
tinuous piecewise linear funetions with compact support on (0,1) and [0, T']
respectively;

(ii) conditions (2.1),-(2.1), are satisfied in the sense of the trace [5], i.e.,

tz t2
(2.4), lim [ w(®,t)di=Lm [u(z,t)dt=0 for every (&, 1) e [0, T;

>0 13 el Iy
b b . .
(2.4), lm | (w(@,?) — wl@))do = lim | (@(z, 1) — we(w)) do = 0
>0 a >0 a

for every (a,b)e(0,1).

In this new formmlation we can relax considerably the smoothness condi-
tions on « and although there is no striet equivalence between the weak and
strong formulations, where there are discontinuities in the first derivatives,
the former has the predominance from a physical point of view.

3 - Numerical solution of the weak problem

We can proceed now to a discretisation of problem (2.4) by « space-time
elements » [2] leading to an efficient numerical process of solution.

Starting from the assumption that the solution u(x, ¢) fullfills the «semigroup
property », the process is based on the division of the domain & into N rectan-
gles D, = (0,1) X (T—1, Ta)y # = 1,..., N; 7= 0, 7,= T. Knowing the values
of 4 and u, at instant ¢t = 0, we can find % and u, at instant ¢ = 7;. Knowing %
and u, for ¢ == 7, the values for ¢ = 7, are defermined and so on until the pre-
established time 7' is reached.

Every rectangle (0,1)X (7,1, 7,) is divided into «rectangular elements »
R as shown in Fig. 1.

The approximation of the function u(z,?) within the element is obtained
in this way

(3.1) u(w, ) = ii Nz, t)u(P;) = N'u,
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where the shape funetions N(w,f) have the following properties
(3.2) Ni(@, 1) = @ua)-pi(t) ,
with @, and y; linear functions,

(3.3) N(P))=6:; (i,§=1,2,3,4),
4

(3.4) SiN@t) =1 V1) eR.
1

For the derivatives, we obtain from (3.1)

& 0N

(3.5), (2, 8) = 21‘ a—mi (z, t)u(P;) = Ngu ’
1
& ON;

(3.5), w2, 1) = zi ot (2, Du(P;) = NtTu:
2

(3.5)s (@) = 2 Ni(w, 0)io(Py) = Nj it .
1

Similar expressions are used for the approximation of funetion » and its
devivatives.

Accepting the approximation (3.1) and (3.5), the problem (2.4) can be
formulated for the single element as follows

k1 . b
(3.6) —vg( [ NJNg dz) ity — v7( | J (IV.N])dazdt)u
k % 0
b1 Ty
+o7( [ T (N F(NZu))dadt) = 0,
% 0
or
(8.7) vIQuy+ v" Mu + "W =0,
“t1 b1 7y
Q=— ] (NN))dz, M=-— ][ [ (NN)dwds,
% % 0
(3.8)

%+L Ty

W= [ [ (NJF(Nu))dedt.

% 0
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Indieating with u, the known vector of the nodal values of « for ¢ = 0 and
with u; the unknown vector of the nodal values of « for { = 7,, (3.7) may be
written in the following way

(3.9) v5 Qo+ (v3; v) [

i Ny R R LG T

Myy; My, 1 Wi
where, keeping in mind the hypothesis v,= 0, we obbain
(3.10) vQuy -+ vf Mygu, + of Mypu, -+ o] Wy= 0.

As a result of the arbitrary choice of », the following condition is obtained for
the single element

(3.11) Qi‘o+ Myu,+ Mpu,+ Wy= 0.

(3.11) has to be written for all the n elements in which the strip &, has been
divided. The K systems of the two equations so obtained shall be combined
one with the other, adding up the equations that refer to the same unknown
value and taking into consideration the boundary conditions. This process,
known as «assembly », leads us to a system with K — 1 equations for the
gsame number of unknown values.

We may therefore write, for the whole domain 2,, a system of equations
formally analogous fo (3.11)

(3.12) z(u,) = Ql"o + Myuy+ Mypu,+ Wo=0.

This system (3.12) is non linear because of the presence of the term W,. For
its solution, Newton-Raphson’s method is adopted.

Once the vector u, is determined, even the initial conditions w, for the
subsequent step in time will have to be calculated. The following method is
considered the best for the calculation of u,, even though it is expensive because
of the amount of computation involved.

Let us determine the value of funetion % for ¢t = 7y, t;, = (1 )7, and
t, = (L — B)r, for an appropriate f

u(t,) — u(ls)

(3.13) =g

s
assuming in the calculation that § = 0.1.

Finally a recurrent process is obtained which brings us to a unique value
of u for any value of ¢t even if ¢ is bigger than {,. We will go back to this
point in the next paragraph.
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4. - Numerical results of the problem of F.P.U.

In the numerical example quoted below we have taken e = 0.2. On the
basis of the vesnlts obtained by Lax[5], we find the critical instant is
t.= 4/n%e =~ 2.026.

The interval [0, 1] in @ is divided into 100 equal parts and the width of
every step in time is faken as 0.01. The solution w(x, ?) is caleulated in the
domain

4.1) P = (0,1) % (0, 5) .

The reduced Gaussian integration method is adopted: one single point for every
element. In figures 2, 3 the graph of the solution u(z, t) is shown as a function
of # at various instants, with a step in time equal to 0.05 up to 7' = 5.

For ¢ >t~ 2 (Fig. 8), the graph of the funetion » shows a sharp change
of slope. See also Fig. 4, where u, is plotted as function of @ for 3.5 < t < 4.

As it has already been remarked, more than one solution to the problem
(2.4) is possible when shoek waves occur and uniqueness can be recovered im-
posing, for example, Lax’s condition on the characteristic paths[5],, [7].

Lax’s condition for a system of the 2nd order demands that if 1, and A,
are two eigenvalues in ascending order (in our case — &k and k) the following
results obtain

Alw,) < s, A(w,) > 8> A{w,) for s >0,
(4.2)
M(w,) > 8 > Aa(w,) , §< Ao(w,) for s <0,

where w,, w, indicate respectively the values of w= u, to the left and to the
right of the discontinuity and s = dax/dtis the slope of the path of discontinuity.

Fig. 5 shows the behaviour of the characteristic path in the domain
2 = (0,1)x(2,3) of the (z,¢) plane and the discontinuity path (which is
recognized in the figure by its irregular behaviour).

Observing Fig. 5, and keeping in mind that 1, and 1, are lespecmvely the
slope (dz/d?) of the two families of characteristic paths, it can be checked
that the condition is satisfied. In fact, for < 2.6.

(a) the characteristics of the family corresponding to the eigenvalue - %
converge, for an increasing value of ¢, from the left and from the right of the

discontinuity path;

(b) the characteristics of the family corresponding to the eigenvalue — %
intersects the discontinuity path and gives A(w,) = k(w,) < s.
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At the instant when the discontinuity path meets the edge of P(wv = 1)
and is reflected, the two families of characteristies change their roles. This
verification may be done for the whole period in which the numeric solution
is calenlated: hence the validity of Lax’s condition is verified.

For ¢ > t, (1.2) does not hold. Let F(y) be a primitive of k*(y). We have
from (2.1)

1 1
I (@gems) do — [ ag( _q_ Plu,))dw =0, whence
° 0 dx
td l 14
J g (Gude— J (g (Plu)u) — Flu).)do = 0.
It follows that
a Pl F 1 rd 1 1
ai(of Eufdw—{—a({)éu?dm (,jai §u, dw—s()[éug]’

j' G(u,) do + j' G(u,) dw) = — §' (1) [G(u.)] + j'llf’(ux)uﬂ dw,
s(2) 0

fad—( (a)) Qo = Plu)us | o — [Pl ],

where s = dw/dt is the slope of the discontinuity path, G(y) is a primitive of
F(y) and [-] represents the value of the jump along the discontinuity path.

Because u4,0) = u,(1) = 0, we have
d ! 1 2 7 1 2
@8 (I (Gt Gw))dr = —s(0) (54 + Gl — [Fluw).

The left hand side of (4.83) is the time derivative of the mechanical energy.
It can be proved, [5);, that if a solution w(z, f) of (2.4) satisfies the condition
(4.2), the right hand side of (4.3) is negative. Thus the equation (4.3) shows
that the mechanical energy decreases when shocks oceur.
1
The expression [(3u} -+ G(u,))do has been numerically evaluated at every
0

time step whose values are plotted versus time as shown in Fig. 6.
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5 - Other numerical results obtained

The numerical method was used for the solution of the problem (2.1) also

for other expressions of Z(w,).

Let us take for example the problem (2.1) for k(y) = 1/(1 + %?). Because
(dk/dy)(0) = 0; the problem is not genuinely non-linear and the hypotheses
of Liax are no longer valid. Moreover because k(y) satisfies the following

conditions

Ey)>0 and k(0)=1,

/<O for y >0,
k' (y)
\>0 for y< 0,

+o
f ky)dy < + oo,

it can be proved [6] that the problem (2.1) admits a unique smooth solution

for every ¢> 0.
The numerical solution is defermined for 0 < ¢ < 3. Figure 7 shows the

behaviour of the solution u(z, t)for 2 <<t < 3.

From an analysis of the graphs the solution appears to be always regular
and symmetric with respect to z = 0.5.

The behaviour of the characteristic lines (Fig. 8) confirms the absence of

gshoek fronts.

We wish to thank G. Capriz for many ecritical remarks.
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Riassunto

8% descrive un metodo numerico per lo studio di problemi di vibrazione non lineare det
fili. I1 metodo si basa sw una formulazione debole del problema proposta do Antman e
sull’uso di elementi finiti spazio-tempo che consentono di approssimare la soluzione anche
in presenza di discontinuita nelle derivate prime. Il metodo viene applicato allo studio del
problema di Fermi-Pasta-Ulam la cui soluzione, dopo un certo istante critico, non & liscia.
Viene calcolata la diminuzione di energia meccanica nel tempo dopo Uistante critico.

% % %






