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Rocer Yur CHI MING (%)

On regular rings and Artinian rings (II) (**)

Introduction

The concept of injectivity is among the most important fundamental con-
cepts of the theory of rings and modules (ef. for example, [2], [3] and [5]),
motivating active research on injectivity since several years. In this note,
we introduce a generalization of injective modules, noted ¥J-injective, to be
considered in connection with A-rings, X-rings and Kagch rings.

Throughout, 4 represents an associative ring with identity and .A-modules
are unitary. J, Z, ¥ will stand respectively for the Jacobson radical, the left
singular and the right singular ideal of A. As usual, an ideal of A means a
two-sided ideal and 4 is called left duo iff every left ideal of A is an ideal.
A left (right) ideal of A4 is called reduced if it contains no non-zero nilpotent
element.

We now introduce the following generalization of injective modules.

Def. A right A-module M is called YJ-injective if, for any 0t ac A,
there exists a positive integer » such that e” = 0 and any right 4-homomor-
pnism of a"A into M extends to one of 4 into M.

Left YJ-injective modules are similarly defined. A direct summand of a
right YJ-injective module is YJ-injective. It is easy to see that if 4 is von
Neumann regular, then every right (left) 4-module is YJ-injective. We do not
know whether the converse is true. However, if 4 is either reduced or left
duo, then the answer is positive (ef. Theorem 5.1). Kasch rings, A-rings and

(*) Indirizzo: Université Paris VII, U.E.R. de Mathématique et Informatique,
2 Place Jussieu, 75251 Paris Cedex 05, France.
(**) Ricevuto: 21-VI.1983.



102 R. YUE CHI MING [2]

X-rings ([2],) with certain YJ-injective conditions are also considered (The-
orem 7). But we start with a necessary and sufficient condition for classical
left quotient rings to be strongly regular. Reecall that @ is a classical left
quotient ring of 4 iff @ is a ring containing 4 such that every non-zero-divisor
of 4 is invertible in @ and every element of @ is of the form ¢ = b-1a, b,
ac A, b being a non-zero-divisor of A.

Proposition 1. Let A have a classical left quotient ring §. The following
conditions are then equivalent:

(1) @ s strongly regular.
(2) A is reduced such that for any a € A, there exists an idempotent e € @
such that Aa C Li(e) € Ly(r4(a)).

Proof. Assume (1), For any e€ 4, a = aga, g€ @ and 4 = ga is idem-
potent in @ such that Qa = Qu = ly(e), where e =1 —u. If cely(e), ¢ = cu
= ¢qa which yields 1(e) C Iy(r4(a)) and therefore (1) implies (2).

Assume (2). Let ¢ = s'a€c@Q, s, ac A. By hypothesis, Aa C Li(e) C Ly(r4(a))
for some idempotent e Q. Set u =1—¢, b =a - e Since A is reduced,
then so is @ and we then get (b)) = #,(0) = 0. I b = ¢y, ¢, y € A, then
7,(y) = 0 which implies that y is invertible in ¢ and since ba = a?, we have
a = a(y~1c)a (Q being reduced), whence g = g(y—'¢s)q which proves that (2)
implies (1).

If ¥V is a left submodule of a left A-module M, write K, (N)={ye M \cy
€ N for some non-zero-divisor ¢ of 4}. If A has a classical left quotient
ring, then K, (N) is a submodule of ,M. The usual closure of N in M is
Oly(N) = {y € M\Ly C N for some essential left ideal L of A4}. In general,
Cly(N) 5= Ky(N). It is well-known that 4 has a classical left quotient ring
iff A satisfies the left Ore condition ([3],, p. 101). The next proposition shows
that rings whose essential and complement left ideals are ideals must have
classieal left quotient rings.

Proposition 2. Suppose that all essential and complement left ideals of A
are ideals. The following are then equivalent:
(1) A is a reduced left Goldie ring.
(2) For any left A-module M and every left submodule N, Cly(N) = Ky (N).
(8) Buery essential left ideal of A contains a non-zero-divisor.
(4) For every left ideal I of A, K(I) is a complement left ideal.

Proof. Let a, ce 4, ¢ non-zevo-divisor. If K is a complement left ideal
such that Ae¢@ K is an essential left ideal, then Ke¢C K N Ac¢ = 0 implies
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K = 0, whence de is essential and is therefore an ideal of A. Then ¢a = de
for some de A, which implies that 4 satisfies the left Ore condition.

(1) implies (2) by ([3];, Theorem 3.34).
If L is an essential left ideal, then Cl (L) = A and therefore (2) implies (3).

Assume (3). If I is a left ideal of 4, let ¥ be an essential extension of
K. (I) in 4A. For any y € B, Ly € K,(I) for some essential left ideal L, whence
L contains a non-zero-divisor ¢ and ¢y € K (I) implies there exists a non-zero-
divisor b such that bey € I. Therefore iy € K 4(I) which proves that (3) implies (4).

Assume (4). If 7' is an essential left ideal of the classical left quotient ring @,
then U= T N A is an essential left ideal of A which therefore contains a non-
zero-divisor (because K, (U) = A), whence QU = @. This yields 7 = @ and
(4) implies (1) by ([8];, Lemma 1).

We now turn to YJ-injectivity.

Lemma 3. The following condiltions are equivalent:
(1) 4 s a YJ-injective right A-module.
(2) For any 0= a€ A, there exists a positive infeger n such that Aa® is
a non-zero left anwililator.

Proof. (1) implies (2). For any 03« b e 4, there exists a positive in-
teger n such that b» 5= 0 and for any u e I(r(4b")), since r(b*) = r(I(r(b"))) € r(u),
the right A-homomorphism g of 524 into A defined by g(b"a) = ua (a € A)
yields % = g(b») = yb» for some ye A, whence I(r(4d")) = Ab~.

(2) implies (1). If ce 4, n a positive integer such that Ae¢» is a non-zero
left annihilator, let f:e¢"d — A be any right 4A-homomorphism. Then r(¢?)
C r(f(er) implies Af(e") CU(r(f(e"))) € I(r(c")) = Ae* and hence f(¢*) = de* for
some de. A which proves that 4, is YJ-injective.

A is called a right YJ-injective ring iff A, is YJ-injective. Right YJ-injec-
tive rings generalize right self-injective rings and rings whose injective left
modules are flat. Following [2];, an element ¢ of 4 is called right regular iff
#(¢) = 0. Then ¢ is a non-zero-divisor iff it is right and left regular. It is well-
known that if A4 is right self-injective, then ¥ = J ([2];, Corollary 19.28).
For right YJ-injective rings, we have

Remark 1. Let 4 be right YJ-injective. Then (a) ¥ = J; (b) a right
regular element of A is left invertible and consequently, any left or right
A-module is divisible.
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Remark 2. If 4 is a commutative ring such that every finitely gen-
erated ideal is either a maximal annihilator or a projective annihilator, then
4 is either quasi-Frobeniusean or von Neumann regular.

Applying [7] (Proposition 1), Lemma 3 and Remark 1, we get

Proposition 3.1. The following conditions are equivalent:
(1) A is quasi-Frobeniusean.
(2) A is a right Noetheriam, right YJ-injective ring whose right ideals are
right annihilators.
(8) A is a right Astinian, left and right YJ-injective ring.

Following [2],, 4 is called a left A-ring (resp. 2Z-ring) iff the set of left
ideals of A which are left annihilators of subsets of the injective hull of ,4
satisfies the descending (resp. ascending) chain condition. Consequently, left 4
(resp. 2)-rings generalize left Artinian (resp. Noetherian) rings.

Combining ([2],, theorems 11.4.1 and 11.4.4), Lemma 3 and Proposition 3.1,
we get

Corollary 3.2. The following conditions are equivalent for a commutalive
ring A:
(1) A is quasi-Frobeniusean.
(2) A is a X-ring whose principal ideals are ammihilators.
(8) A is a YJ-injective A-ring.

Remark 3. The following conditions are equivalent for a left duo ring 4:
(a) 4 is a semi-prime left A-ring. (b) 4 is a semi-prime left 2-ring. (c) For
any left A-module M and left submodule N, Cl,(N) = Eu(N). (Apply [2],,
Theorem 11.4.9 to Proposition 2).

Recall that 4 is a right uniform ring iff every non-zero right ideal is essential.

Proposition 4. Let A be a right uniform right YJ-injective ring. Then
A is a local ring and ¥ = J is the unique maximal left (and right) ideal of A.

Proof. If ¥ = 0, then 4 is a right Ore domain and by Remark 1(b),
A is a division ring. Now suppose that ¥ = 0. For any a€ 4, a¢ Y, #(a) = 0
which implies a left invertible (Remark 1(b)). Therefore every proper left
ideal (in particular, every maximal left ideal) is contained in ¥, which proves
the proposition.



[5] ON REGULAR RINGS AND ARTINIAN RINGS (II) 105

Corollary 4.1. A right Noetherian right uniform right YJ-injective ring
is right Artinian local.

Lemma 5. Suppose that 4 satisfies any one of the following conditions:
(1) 4 is left YJ-injective or (2) every maximal left ideal of A is YJ-injective.
Then anmy reduced principal left ideal of A is generated by an idempotent.

(The proof depends on the fact that if 4b is a reduced principal left ideal,
then r(b») CUD) and (") = U(b) for any positive integer n).

Remark 4. ([1], Corollary 6) holds for the following classes of rings A:
(1) Every maximal right ideal of 4 is YJ-injective. (2) HWvery non-zero reduced
right ideal of 4 contains a non-zero principal YJ-injective right ideal.

We are now in a position to give some new characteristic properties of
strongly regular rings.

Theorem B5.1. The following conditions are equivalent:

(1) A is strongly regulasr.

(2) For any ac A, there ewvists a central idempotent ec A satisfying
K (Ada) = AaCl(e) C Ur(a)).

(3) For any maximal left ideal M of A and any a € M, there exist a central
idempotent e € M and a left regular element ¢ of A such that a = ec.

(4) A is a left duo ring such that the sum of any two injective left A-modules
is YdJ-injective and flat.

(8) A is a left duo ving whose simple left modules are YJ-injective.

(6) A is a left duo ring whose simple right modules are YJ-injective.

() A is a reduced ring whose maximal lefi ideals are YJ-imjective.

(8) A is a left duo left YJ-injective ring containing a reduced maximal
left ideal.

Proof. It is easily seen that K,(Ada) = Aa for each ¢ € 4 iff every non-
zero-divisor is invertible in 4. Therefore (1) implies (2) by Proposition 1.

Assume (2). It is sufficient to show that 4 is reduced for then (2) will
imply (1) by Proposition 1. Suppose there exists e« € 4 such that a® = 0.
Since Aa Cl(e) Cl(r(a)) for some central idempotent e, then I(e) = i(r(a)),
which implies r(a) = ¢4, whence a = ae = 0, proving that 4 is reduced.

Assume (1). Let M be a maximal left ideal of 4, ¢ € M. Then da = Av
= l(u), where v is a central idempotent and % = 1 —v, whence ¢ = a -+ u
is a non-zero-divisor and therefore invertible in 4. Now ac = a* implies
@ = a*¢™, whence ¢ = ac'a, yielding a = ec, where e = ¢-1a is idempotent
in M. Thus (1) implies (3).

Assume (3). Let b e A such that b* = 0. If Ab 5= A4, by hypothesis, b = ec,
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where ¢ is a central idempotent and ¢ is a left regular element. Then 0 = ec?
= be implies b = 0, which proves that A is reduced. If M is a maximal left
ideal, for any « € M, there exist a central idempotent v € M and d € A with
l(d) = 0 such that ¢ = ud. Then a = udu € a M which implies that ,A/M is
flat, whence (3) implies (4) by [8], (Theorem 1.4).

Assume (4). Sinee the sum of any two injective left A-modules is YJ-
injective, then any quotient module of an injective left A-module is YJ-injec-
tive (cf. the proof of [8]s, theorem 11(6)). If Z == 0, by [8], (Lemma 7), there
exists 04 2e Z such that 22 = 0. Let E denote an injective left 4-module,
N a left submodule of H, f: Az — B[N a left A-homomorphism, k: & — H/N
the natural projection. Since B[N is YJ-injective, we get a left A-homo-
morphism g: Az — F such that kg = f. Then, using this property, it can be
proved that if M is a left A-module, § a left submeodule of M, F': Az — M/[8
a left A-homomorphism, K: M — M/S the natural projection, then there
exists G: Az — M such that K@ = ¥, showing that .4z is projective, which
yields z = 0, a contradiction. Thus Z = 0 and (4) implies (5) and (6) by [8];
{(Theorem 4).

Assume (B). If 04 be A such that b2 = 0, the set of proper left subideals
of Ab as a maximal member K by Zorn’s Lemma, whenee ,Ab/K is simple.
If g: Ab — Ab/K is the natural projection, then there exists ¢ .4 such that
b+ K =gb)=>bcb + K. Now since 4 is left duo, bce Ab implies be K,
whence Ab = K, a contradiction. This proves that 4 is reduced. Then it
may be proved that Ad + l(d) = 4 for any de A (because 4 is left duo)
yielding A strongly regular and (B) implies (7).

Similarly, (6) implies (7) by [4] (Corollary 6). (7) implies (8) by Lemma 5(2).

Assume (8). Let M be a reduced maximal left ideal of 4. If 0s4be A
sueh that b2 = 0, then (4b)% = 0 implies M N Ab = 0, whence 4 = M P Ab,
contradicting (4b)? = 0. This proves 4 reduced and (8) implies (1) by Lem-
ma 5(1).

In view of Theorem 5.1, we may assert that quasi-injective modules need
not be YJ-injective and the converse is not true either. Also, a quasi-injective
YJ-injective module needs not be injective.

[8]; (Lemma 1) and the proof of Theorem 5.1 yield

Proposition 6. The following conditions are equivalent:

(1) A is left and right self-injective strongly regular with non-zero socle.

(2) A is aleft duo ring containing a reduced imjective maximal left ideal.

(3) 4 is a left duo ring containing an injective maximal left ideal M
such that wM, is YJ-injective for every w e M.
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Proposition 6 and [8], (Lemma 7) motivate the next interesting remark.

Remark 5. If A is left self-injective containing a reduced maximal left
ideal, then either 4 is regular with non-zero socle or strongly regular.

The proof of Theorem 5(1) (4) also yields.

Remark 6. A is left self-injective regular iff 4 is left self-injective such
that the sum of any two injective left A-modules is YJ-injective.

Combining Lemmas 3 and 5 with Theorem 5.1, we get a few nice charac-
teristic properties of commutative regular rings (cf. [5], p. 272).

Proposition 7. If A is commutative, the following are then equivalent:
(1) A is regular.
(2) A is a YJ-injective ring whose principal ideals ave flat.
(3) Buery simple A-module is YJ-injective.
(4) Bvery maximal ideal of A is YdJ-imjective.

The next «singular ideal intersection » property for rings whose simple
right modules are either injective or projective is apparently new.

Remark 7. Consider the following statements: (a) Every simple right
A-module is either injective or projective. (b) Every simple right 4-module
is either YJ-injective or projective. (¢) ¥ N Z = 0. Then (a) implies (b)
which, in turn, implies (c).

A is called a left Kasch ring iff every maximal left ideal of A is a left anni-
hilator [2],. Artinian Kasch rings are studied in [6].

Remark 8. The following conditions are equivalent for a ring 4 whose
simple left modules are either injective or projective: (a) 4 is a left Kasch
ring. (b) Every essential left ideal of 4 is a left annihilator (efr. [8],, Theorem 1).

Remark 9. (1) If 4 is a right Kasch ring, then ZCJ. (2) If 4 is right
YJ-injective such that every maximal left ideal is prinecipal, then A is left
Kasch.

The next result completes [8]; (Theorem 11).
Theorem 8. The following conditions are equivalent:

(1) A is semi-simple Artinian.
(2) A is a left Kasch ring whose simple right modules are YdJ-imjective.
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(3) A is a left Kasch ring such that any minimal left ideal is YJ-injective.

(4) A is a left non-singular left YJ-injective left Z-ring.

(5) A 45 a left non-singular left YJ-injective right X-ring.

(6) A is a left X-ring whose simple left modules are YJ-injective and flat.

(7y The right annihilator of any mawximal left ideal of A is non-zero YdJ-
injective.

(8) A is a left YJ-injective left Kasch ring such that the sum of any two
injective left A-modules is YJ-injective.

Proof. Obviously, (1) implies (2) through (8).

Assume (2). Suppose there exists a non-zero ideal T' such that 7= 0.
If 0s<be T, then 4bAd + (D)= A. Let M be a maximal right ideal con-
taining AbA + r(b), f: b4 - A[M the right A-homomorphism defined by
f(ba) = a - M for all ae A. Then there exists y € 4 such that 1+ M= f(b)
= yb -+ M which yields 1€ M, a contradiction. This proves 4 semi-prime and
therefore (2) implies (1).

Assume (3). If M = l(b) is o maximal left ideal of 4, be A, then Ab is
a minimal left ideal which is YJ-injective. Suppose that (4b)2 = 0. If 4:
Ab — Ab is the identity map, there exists ce 4 such that b = i(b) = beb
which proves that A4b is generated by a non-zero idempotent, contradicting
(4b)? = 0. Therefore 4b is a direct summand of 44, whence ,4/M is projec-
tive, implying that .M is a direct summand of 44. Thus (3) implies (1).

Either (4) or (8) implies (1) by [2]. (Corollary 5.13) and Remark 1(b).

Assume (6). Since every simple left 4-module is ¥J-injective and flat,
then A is semi-prime such that every non-zero-divisor is invertible in A.
Since 4 is left Goldie, then (6) implies (1).

Assume (7). Let M be a maximal left ideal, 0 5 b er(M). There exists
a positive integer # such that b» == 0 and if ¢: b»4 — (D) the inclusion map,
then b = i(b*) = yb» for some y € r(M). Now M = l{y) and if Ay N M =0,
then Ay (being minimal) is contained in M which implies b" = yb" = y*b" = 0,
a contradiction. Therefore Ay N M = 0, which proves that ,M is a direct
summand of .4 and hence (7) implies (1).

Finally, Remark 1(a) and the proof of Theorem 1.5(4) show that (8) im-
plies (1).

We conclude with a last remark.

Remark 10. (1) 4 is right hereditary iff every essential right ideal
of A is cither projective or a YJ-injective right annihilator. (2) A4 is simple
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Artinian iff 4 is a simple right YJ-injective ring with a maximal right anni-

hilator.
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Abstract

Generalizations of von Neumann regular and self-injective rings, quasi-Frobeniusean
and Artinian rings are studied through HS-injectivity, A-rings, Z-rings and Kasch rings.
Oonditions for classical quotient rings to be strongly regular and reduced Artinian wre

also given.






