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ENRICO PAGANTI ana MasstMo TINTO (%)

Acceleration and thermal waves in kinetic theory (**)

1 - Introduction

It is well known that the parabolic character of the Fourier equation gives
rise to instantaneons heat propagation. This fact, already surprising in a clas-
sical framework , is completely unacceptable in the relativistic one, and calls
for a revision of the theory. An analogous problem affects Navier-Stokes’
theory of viscosity in which the existence of acceleration waves is precluded.
To overcome these difficulties various theories had been proposed in the frame-
work of Continuum Mechanics, both in a classical and in a relativistic context.

A different approach to the problem of heat propagation and viscosity is
supplied by Kinetic Theory, in which the state of the system is completely
defined, in a statistical sense, by a distribution function [4], satisfying a tran-
sport equation and determining all macroscopic quantities, without any need
for assuming any a priori constitutive equation.

In the present work we examine the transport phenomena related to heat
propagation and viscosity in the context of Relativistic Kinetic Theory and
evaluate the corresponding (finite) speeds of propagation. These problems
are also treated in [3];,.
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2 - Elements of Kinetic Theory

Starting from the distribution function f, one defines the 4-flux of particles
N# and the energy-momentum tensor Z# on the basis of the equations [2] (%)

S d3
i) = of S pefle,p),  p=VIEE W, )= of Lo e o).

Denoting by Uk(w) the hydrodynamic 4-velocity field (with normalization
gu UrU? == ¢%, guy being the metric tensor), let

Awy = gﬁ“’——o—lz Us U

be the spatial projector associated to Us. Obviously U# must be related to the
dynamical variables describing the gas. Two different characterizations for U#
are present in the literature, based on the conditions A#N,= 0 (Eckart) or
AwT, U° = 0 (Landau-Lifschitz). Now let usintroduce the following quantities

0 = El;zN » U, (particle density), en = ;—l- Twr U, U, (energy density) ,

1) In= (U, Tv*—hN) Az  (heat flux; [+U,= 0),

where b = ¢ 4+ p/n is the entalpy per particle, and p is the local hydrodynamic
pressure, which we assume equal to #kZ. The space-space projection of the
energy-momentum tensor may be split in the following way

(2) T AE A = — pAw - [T,

Accordingly, we have the decomposition

(0} (1) (0)

Tw— Twv - Tir | Twr— > oqUa 7 —pAm
02

1)

T — 0_12 ((I# + hARSN ) U7 + (I + o N,) Us) -+ ITw |

(*) Greek indices run from 1 to 4; summation over repeated indices is understood;
the signature of the metric is (4, —, —, —).
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In particular, using Eckart’s definition for U#, we obtain -

[¢8]

Iv= U,Tw s, s E]‘; I+ U7 + I Uwy + [Tw»

while, using the Landau-Lifschitz one, we obtain

1
It = — pAwN,, Tw= ][,

For a gas having no interaction with an external field, the dl%llblltlon fune-
tion satisfies the Bol’czmann equation

3) phouf(®, p) = Oz, p) .

Concerning the meaning of the collision term €, and more generally, the
mathematical problems associated with eq. (3), as well as some approximate
methods of solution, the reader is referred to [1], [2], [5]. Here we report only
the solution of the equation (3) based on the so-called fourteen moments ap-
proximation. The following equations, in term of the macroscopic quantities
previously introduced, hold true in a situation not too far from egunilibrium and
follow from the Landau-Lifshitz choice of the hydrodynamic 4-velocity

(4&) Dn + nVﬂ U”"—%IV”I”: 0 )
(4Db) é—t mDU:— nkVeT — ETVen -+ VoIl = 0,
1 DT
“II
(4d) (— nkT)H+Vv(U— i) =0,
p'D kT Vel kT
(4e) (77 + n—chz) In—(1— T Vep

1 I - i’ .
+ = (" VoIl 4 o VaI) = 0,

1 ?I//D o <] yll __9__—_ R .
(4f) (-277 + o) W —VEU? — = VeI*= 0 in which

(Ba, b) D= Urd,, Ve= A%y,
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and the symbol = indicates symmetrized traceless spatial projection, while 7,,
7, A are the transport coefficients, representing bulk and shear viscosity and
thermal conductivity respectively; o', «’, %, p", 9" are functions of the tem-
perature and later we shall give approximate values for them; y = C,/C,.

3 - Propagation of discontinuities

In studying the propagation of acceleration waves, taking (4) into account,
we must require continuity of n, Us, T, II®, I#, so that possible discontinuities
may only occur in the derivatives of these quantities. Denoting by 2 the
3-surface of discontinuity and by n, its normal 1-form, let p, . bean arbitrary
continuous tensor field. Then we have the well known Maxwell relation

(6) ["/’a;...a,,,n] - ‘Q:xx---rxpn” ’

the left hand side expressing the jump of the derivatives y, , ,on 2; Q
and n, are defined on 2.

In connection with the introduetion of U#, we may take the spatial resclution
of n, in the co-moving frame of reference determined by U# (?)

U, o -
(7) M= —=+ iy (T4fu=0).

The normalization and orientation of n, is then fixed on the basis of the con-
dition ##fi,= —1, ¥>0. Obviously

(8) wUp=cv, nény=1v*—1,
When v*<1 (n*n,>0) the spatial vector v#* is identified with the 3-velocity

of propagation of the discontinuities in the co-moving frame of reference.
From the definitions (5a,b), using (6), (8) we obtain

(9) ['Dy)‘x;...zxp] = Uﬂ[’(/)aa...ocp,#] = Uu‘rol...zxpn” = OU‘Q

K1nbip ?

(10) VEy, o = A1y, ] = AP0, y=Q, , 7+
We now observe the following facts

(a) UrU,= ¢® = DU+ and [DUH] are spatial vectors;

(®) v is measured in natural units.
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(b) assuming that, before the perturbation has come, the gas is in eqni-
librium, and so I#= 0 and //#»==0, as a consequence of the assumed conti-
nuity of I# and I7#, It and IT# are equal to zero on X}

(¢} I»is spatial (see eq. (1)) and, as a consequence of (b), [DI#] is spa-
tial too;

(d) ITw is the space-space projection (see eq. (2)) of a symmetric rank-2
tensor and, as a consequence of (b), [DI[#] is again a space- space tensor.

Now we introduce the fcﬂowing definitiong

(11) [DU#] = cvdr, [VeUH] = Qufir
(12) [Dn] = o6vN, [Ven] = N##,
[13] [DI#] =ocvl®, [(VeIe] = [edy
(14) (DT = o0, Vel = 0fin,
(18) [DIIw] = ev P,  [VUIw] = Pwft,

where all quantities @#, N, I'#, 6, P» are space tensors defined on 2.
Taking the discontinuities of both sides of the equations in the system (4)
and substituting (11)-(15) into them, we obtain the following algebraic system

1 I
(16a,b) ovN -+ n®, ik — 7 Lysr=10, —LZ’B Q¥ — pkOfin — kT Niip+ Pwrit,=0 ,

1 ev " 1 1 N

(16c) Ty 7!~ P =G gy) =0
4
OC/ . OC” N
(16d) mo@l’—!—@unﬂ-—nkaunﬂ:O,
ﬁll kT 6 kT . _.Zi’_ , o “—l/ o

(166) g OT#— (L — =) 75 0 o 3o Nk o L (PO PAR) iy~ Pii#=0,
16 il cv(Prv - PVw) _1 (Doiir 4 riimy
(16f) T 5

1 v 7% ,},” 1 5y " 1 v )y — — 1
+§ Aw D7 _nkT(§ (e +]’mu)—-§Au I'.#i*) = 0, where P -——§P§; .
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4. - Longitudinal waves

In this case, characterized by the condition &r= Pfit, (= D,fit = — D)
eqgs. (16) become

(172, b) oON — nD — = Fu k=10, M Ot — nkOft# — ETN7H - Prrfi, = 0,
1 o 1 1 - o I .
(17e, d) i—y T 7 +@—“(§-—%)FMW‘ ITGWP & — kTF fin=0,
B kT Onie kT y" e o L

(170) s, 14— U —57) =+ 5 Ntk A o (P PAR) - oy, Pttt = 0,

7'}Ill 1

—_— ¥ TUPY . 4
(17£) T cv(Pur PAw) — DFsfy 3 A D

yll

1 v v 1 v oY —
— T (5 (Lufiy + I'viie) —3 Aw [ 7i%) = 0,

Evaluating P»f, from (17b) and substituting it in (17¢), we deduce that [»
is proportional to fi#

(18) Ie=Tis, Tfis=—1TI,

corresponding to the longitudinal nature of the thermal discontinuity.
Contracting (17f) with %, we obtain

20kl ., 2 y"

2D i — 2 L I,
3 ylllc,v 7 3 yﬂlc,v n

(19) Pwvi, — — Pip—

Substituting (18) and (19) into the system (17), we have

1
(20a) 0N — n®d + iF: 0,
hmo 2 nkT 2 9y

(20D) — RN + =5 i) O — 5 gl T — P =0,

1 1 1 v arl o
(20¢, d) @+(§:"Fn)r+m?9=°’ — @ 4 o T+ WP =0,

KT .2y 1 . 200 BT, 0 | o

@00) g N =g 5w @ ke V0 T3 g T ) g g P =0
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This is to be regarded as an algebraic system in the 5 unknowns N, @, I, 0, P,
all other quantities being functions of them, through the relations

(21a, b) @u= Gfn, I'v= Ifis,

nkf . . 1 y"
,m)(nﬂ'n —}—‘3“.[1“)((1)—{— TF).

(21c) b= —PAw 5 nk

The determination of the speeed of propagation is performed by equating to
zero the determinant of the matrix of the coefficients in the homogeneous
system (20).

Inthelow temperaturerange (2 = me*/k1 > 1), using the approximations [2]

6 , 4 5
oc’—_-gzz, ﬂ———gz, Y =3 h =~ me?,
(22)
p_ % 2 2 2 . 1
® =g ﬂ”_gz, 7”"—'5‘, ﬁm—‘ga 7’,_—"5:

the speeds of propagation are

kT kT
2 = 1.96 o) V2 = 4,12 prope ().

In the high temperature range (# < 1), using the approximations [2]

216 , 6 4
oc’:—-——z4, ‘6:52’ Y =73 h = 4kT,
(23)
6 /4 5 /i 1 17 1 1 3
“”252" ﬂIZZ’ 7’l217 ﬂ’=§7 ')’,=17

the speeds of propagation are v, = 0.57, v,= 0.85.

5 - Transverse waves
In this case, characterized by @D.fit= 0, eqs. (16) become

1
(244, b) coN — 3 Iyfir=0, nkd 4+ kTN + Prrfi,fi,= 0,

(®) For I'= 10°°K, m = 1.6-10"2%, k= 1.38-1071, ¢= 3-100 (c.g.s. units) we
have cv;= 4-10° cm/sec and cv,= 5.8-10° cm/sec.
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1 cv 1 1 o o .
(24:05(1) mia (p W )Fﬂn” O, mGUP———mfunﬂ_O,
ﬁ” o kT g LT y” s o + yl/ B
(240) g Lu W+ M=) g N+ e Pl — =0 P =0,
/8
(24f) Lo o+ PAw) _,% (D - Drim

s

+ % A @ e — 77;1, & (Twiy + Tvivs) — = Aqu ) =o0.

Expressing N, 0, P, P, fi, in term of [,%# through eqs. (24a, b, ¢, d),
and substituting into (24e) we obtain a linear homogeneous expression in
Iyfiz, from which we deduce I.fi*= 0, so proving the transversal nature
of I'*. Substituting this result into the system (24), and assuming v 40,
we have:

hno

(253},b,0) NZO, ——-—-Q)ll._{,__PuI’nvwo 0:0,
1
(254, e) P=20, ~ ol 4 o Peviy, = 0,
7}/Il ) 1 ” . 1 l}j , ]
(251) iy Q0P — S (Prfy  Prik) — o o (e - i) = 0.

The contraction of (25f) with #,, in addition with (25b, e), yields an homo-
geneous linear system in the unknowns @w, ', Pwf,, which admits non
trivial solutions if and only if the determinant of the coefficients is zero. We
have so

1 (kT (y")?
2ylll /3”

V:=

) N=0, 0=0, P=0, Z"’#—-B;Imtﬁﬂ

Pwv— (kT + L hn) (Dwdir - Prisw) .

1 v
20’0}/”’ Igll

In the low temperature range, using the approximations (22) we obtain

kT
R £
14m02()

%) For T = 10°°K, m = 1.6-10"%, k= 1.38-10-%6, ¢ = 3-10' (c.g.s. units), we
have cv = 3.4-10° cm/sec.
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In the high temperature range, using the approximations (23) we obtain
2= 0.2.

Concluding, we see that relativistic moments approximation yields a char-

acterization of wave propagation satisfying the relativistic requirement of

causality.
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Riassunto

Viene studiata la propagazione di onde di accelerazione e termiche in un gas perfetio,

usando il metodo dei momenti per la soluzione approssimata dell’ equazione di Boltzmann.
Vengono esamintati ¢ casi di onde longitudinali e trasversali, a bassa e alta temperatura.






