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FLORANGELA DAL FABBRO (%)

Homogenization of quasilinear
parabolic systems in diagonal form,

having quadratic growth in the spatial gradient (**)

1 - Imtroduction

We study the homogenization of quasilinear parabolic systems having their
main part in diagonal form and a nonlinear first order term f(a, ¢, , grad, u)
growing quadratically with respeet to the spatial gradient grad, w of the sol-
ution u.

A number of homogenization results have been recently obtained in the
nonlinear elliptic case [2];, [3], [4], [5]. In particular Biroli and Mosco in [3],
Boecardo and Murat in [4] consider elliptic variational inequalities with non
smooth obstacles and a nonlinear first order term f(z, u, grad %) growing qua-
dratically in grad u.

On the other hand a relatively small number of works deal with the para-
bolic nonlinear case: among these let us mention the paper by M. Biroli [2],,
who gives homogenization results for parabolic variational and quasi-variational
inequalities, where the first order term f(x, ¢, u, grad, 4) is sublinear in » and
grad, and the obstacle is Holder continuous.

The quasilinear parabolic system we consider herein has already been dealt
with by M. Struwe in [9], who proved the Hélder continuity of bounded weak
solutions via & « parabolic hole filling » technique.

In the present paper: first we give a suitable variational formulation of
our initial boundary value problems (IBVPbs) and then, by taking into ac-

(*) Indirizzo: Dipartimento di Matematica del Politecnico, Piazza Leonardo da
Vinei 32, 20133 Milano, Italy.
(**) Ricevuto: 31-V-1983.
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count the above mentioned Holder regularity, we prove that both the homo-
genization and the energy integral converge. The proofs are carried out by
local energy methods. The homogenization result also requires to show the
existence of suitable « correctors ».

1.1 - Notations

‘Whenever possible we use the same notations as [1].

We let £ be a bounded, connected, open subset of R* with «smooth»
boundary 0L,

More precisely we assume that £Q is «of type A », i.e. there exists a cons-
tant 4 >0 st. YR>0 and Yo e Q2

(1.1) |2 N By(z)| > AR",

where By(w) = {& € R": |& —#|< R} and |- | stands for the n-dimensional Le-
besgue measure of a subset of R

Moreover we assume that £ satisfies the « Wiener type» condition: there
are constants y >0, B, >0 s.t., Yo, 202 and YR € (0, B,]

(1.2) Bunlwy) — cap (62 0 By(wo)) > yRr—

(We recall that
Byr(ws) — cap (¢ N Bg(w,))

= inf {[|grad ¢ |*dz: ¢ € D(B.x(®,)), ¢®) =1 Yo € ¢ N By(x,)}) .

Bap
Let T'> 0 be a fixed positive number; we denote by @ = £2x (0, 7) the
space-time cylinder in R»** and by 2 = 20 x(0, T') the time-like boundary,
i.e. the lateral surface of Q.
In order to define the family of TIBVPbs to which we shall apply the homo-

genization procedure we also need to introduce the periodicity cells ¥ =TT (0, °)
g=1

in B* and ¥ X (0, vp) in B*Yy}, v, > 0) and consider »xn funections a(y, r)
e O (Y x[0,7,]) (4,§=1,...,n) satisfying

(Y, 7) is ¥ —7, periodic,
(1.3)
2> 0 st. au(y, 7)&:6,>A|E]>  VEe R Y(y, ) ().

(1) We adopt here and in the following the usual summation convention over re-
peated indexes.
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We extend a,(y, 7) to R*! by periodicity and seb
e z 1
(1.4) @55(@3 1) = @ss(7, ) (x,8) €@,

where ¢ >0 is a small parameter.
It follows from (1.3) and (1.4) that af, e 0°(Q) N W»*(Q) and

ag(z,t) is e¥—ev, periodic,
(1.5).
a(@, ) E: 6> 482 VEe R, V(x,t).

We can now define the family of parabolic operators

pe= 0, + 4*,
where

Ao = Ao ) = —D,(ai@,1)2) = — diva (as(s, 1) grad) ()

are the seeond order elliptic operators associated to the n Xn matrices a¢(w, t)
= [a5;(@, 1)] € (C°(@) N W>=(Q)) .

We point out that the family {4%} is e-uniformly bounded in
L(LX0, T; HiRQ)), L0, T; H-Y(£2))). We denote by

P=0,+4=20—qy;0,0

the homogenized operator of p:[1]. We recall that the matrix [¢,;] asso-
ciated to A is constant and fulfils the ellipticity condition

(1.5) qi: &5 >=1|&|2 VEe R,
where A > 0 is the same as in (1.5)s.
Nowlet fi: ¥ (0, 7o) X RY X B"* 3 (y, 7, 4, p) — f{y, T, w,p) R, I =1,..., N

be a Carathéodory function, i.e. measurable in (y, 7) and continuous in (%, p),
which satisfies the growth condition

1.6) |7 uwp)|<EQ+]p|?) ae in (3,7) Y(u,p) (E>0).

(2) The spatial and time derivatives of a smooth function o(z,t), (%) €Q, are
respectively denoted by 9,v(w,t), { = 1,...,n and B,v(w, 7).
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We extend f* to R X BY x B"¥ by periodicity and assume
(1L.7) 1Y, 75 %, ) — (¥, 7, 9, Q)|

<e(M) (lp—ql+Ip—allgl+Ip—ql?) + e,

if |u], |v|<M and |v—u|<n, where (M), ¢n) >0 and lim ¢\(n) = 0.
We set >0

ml%

1 .
(1.8) fi@, b, %, p) = fi=, 1! %, ) (, t, 4, p) € @ X R¥ X B¥

and note that f. is a Carathéodory function, ¢¥ — &7, periodic in (#, 1), for
which (1.6) and (1.7) hold uniformly in e.

In order to construct the « homogenized » function f! of f! let us consider
the operator

A =— (8/8:1/ ( i (Ys T (a/aJa ) = — div, (a(fll, 7) gra’dﬂ) ;

acting on the (quotient) Hilbert space (}) W(Y) = W(Y)/R where W(Y)
= {y e HY(Y): y is ¥ periodic}; it turns out that 4, e L(W(X), W(T)*).
Let us associate to 4, the bilinear continuous and coercive form

a: W(X)x W(X) —

oy

(@ p) = al@, ) = Trye <419, P> —f“” Y T) BJ, oy,

As an application of the Lax-Milgram Lemma, we state the existence of a
unique solution yx;(y, 7)€ W(X) Vv of the following variational equation

& (259, T)y P)= T <A1Yss V> V"/)EW( Y) (j=1,...,m), since Al?/:‘EW( )=

We choose the additive z-dependent constant in y,(y, T) in such a way that
2y, v) is ¥ — 1, periodic. (We can take e.g. .#,(x:{y, 7)) =0 Vz, where
M4y, 7)) 1= (X ]) x50y, 7) dy.)
¥
Due to the regularity assumption on the coefficients a,;(y, 7) € C*(Y¥ X [0, 7,]),
it turns out that y;(y, v) € L=(0, 7o; W>=(X)) ([6]).

(®) On the quotient space W(Y) the inner product (@|y)ye, = (2¢/0y.|09/0Y:) 20
Yo, w € W(X) is well defined.
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‘We can now construct the « homogenized » function
fo: @ X RY X RN 3 (z, t, u, p) > fo(u, p) € R I=1,..,N.
We consider p as an # XN matrix and seb
fi(y p) = Mo (1Y, 7, 4, (I — grad, 1)y, 7)p))

= II}ITO j;fﬂ(% 7, %, (I — grad, x) (v, ‘L’)p)d"l]d’[‘,

. where I is the » xn identity matrix and (grad, x)(¥, ) € (L°(Y X (0, 75))) ™ is
the »xn matrix [grad, x;(y, T)] = [(¢/y:) x; (¥, 7)), 4, k=1, ...,n.
It can be easily shown that also f! satisfies conditions (1.6) and (1.7).
‘We notice that, if we extend y;(y, ) to R**! by periodicity and define the
matrix (I — grad, x)¢ € (L°(Q))™"

z
(I“gradﬂ;()a(wat) - (I"‘ gra’dyX) (;‘7 z) ({U, t) EQ ’
then the following relationship holds V(u, p) € B¥ X R™Y

(1'9) f;(ﬁ Uy (I'— gradu%)gp) _\f;(uyp) in LZ(Q) We&kly, l=1,...,N.

1.2 ~ Problem setting and results
‘We consider the family of IBVPbs

peul = fi-, o, us, grad, ue)  in Q l=1,.., N,
(1.105)
(@, 1) 12 =0,  us(w, 0) = g(z, 0) ,

where us(z, t) = [u}(z, t)] is the unknown vector and grad, u. is the n XN
matrix [grad, )] = [0;4}], j=1,...,n; l=1,..., N. The parabolic system
(1.10)c has its main part in diagonal form, whereas the coupling among equa-
tions is due to the first order nonlinear terms, which, by (1.6) and (1.8), grow
quadratically with respect to grad, ..

To the family (1.10). we associate the following IBVPDb

Dot = fi(u, grad, w) in Q I=1,..,N,
(1.10)
w(w, )z =0, u(®,0) =gz 0) (ua,?t)= [uz,1)]).
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It has the same properties as (1.10).. 'We ghall show (1.10) is the homoge-
nized problem of (1.10)..

According to [9], by a weak solution of (1.10)., respectively (1.10), we
mean a vector w.e Y = (L0, T'; Hi(Q)) N L™(Q))¥, resp. w € ¥, which sat-
isfies the system (1.10)e, resp. (1.10), in the distribution sense and the initial
condition ue(:, 0) = u(-, 0) = ¢g(-, 0), where the datum g¢g(-,0)= [g%(-, 0)]
€ (L 2))~.

More explicitly, by choosing test functions in the space 7 = L0, T';
HYQ)) n HY0, T; H(2)) N L*(Q), we set problems (1.10). and respectively
(1.10) in the following variational forms

7 t
(1.11)e 6[ (— mm <0,0(8), wi(t) > by + zr < A ( ;) w(t), v(8) > b)) A

= L‘(Q)<ﬁ('7 *y Uey gra,dwus), V> oog) -+ (gl('7 0) [’l)(', 0))142(.0) [ = 1., N
Voed? sb. o+, T) = 0; wusel¥, u-,0)=g(-,0)e (LQ));

T
(1.11) J (— 1 <0:0(1), u(8) > gl + - <AuH(t), (1) > ahi) At

4]

= M@ '<7‘3(u? gra’dm “)7 V> ro0(g) + (gl('7 O) I'U('a 0))L’(!2) = 1’ sery N
Voed st o(-, T)=0; wek™, u(-,0)=g(-,0) e (L))",

Remark 1. We notice that the final condition (-, 7') = 0 and the inner
products (g*(+, 0) (-, 0)) 20, make sense for test functions v € o, because in
this case the mapping [0, T13 ¢ > v(f) € L*(£) is continuous [7].

Also the initial conditions wu.(:, 0) = u(-, 0) = g(-, 0} € (L2(2)))¥ make sense
for solutions u., % €s£%, as we shall see later on.

Let us congider the e-uniformly bounded solutions of (1.11),, (1.11), i.e.
solutions s, u €Y such that [ueljco, [%]0<M, where M >0 is a fixed
positive number (*). Now, if we assume that the above mentioned constant
M > 0, the ellipticity constant 1> 0 in (1.5), (1.5) and the growth constant
K > 0 in (1.6) are related by

(1.12) 2K M < A

and add a smoothness hypothesis on the initial datum g, then we are entitled
to apply Struwe’s Holder regularity result [9].

(%) The existence of such solutions can be proved by standard « truncation » methods.
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About the initial datum g(-, 0) we assume it is Holder continuous
(1.13) g(+, 0) € (CHQ)Y (%)

We recall that, under this hypothesis, its components ¢¥-,0), I =1,..., N,
can be raised up to @ as weak solutions of the linear IBVPbs relative to the
parabolic operators pe and respectively p° having homogeneous boundary
conditions and initial data ¢¥(-, 0). Both solutions ¢ and ¢!, I=1,..., N,
belong to s#; moreover they are e-uniformly bounded in O""*(), for some
y>0. If p is small, then y = f [6].

We now summarise Struwe’s resulfs which hold under our assumptions.
The main result deals with the Holder regularity up to the boundary of the
g-uniformly bounded solufions of (1.11)e (1.11) (Theorem 1). This requires
to prove that the just mentioned solutions are continuous with respect to
time as trajectories in (L(£2))¥ (Lemma 1).

Theorem 1. Let ue, u €™ be solutions of (1.11); and (1.11) respectively.
Assume that (1.1), (1.2), (1.5)e, (1.6), (1.12), (1.13) hold (¢). Then there exists a
number o« > 0, which does not depend on ue, resp. u, but only on the fized para-
meters in the problem, such that wue, we (0*“*Q))". Moreover the (C***(@))¥
norm of ue, resp. u, can be a priori estimated in terms of these parameters.

Lemma 1. Under the same hypotheses as in Theorem 1 the mappings
[0, T) 31 > ue(t) 3 (L3(2))¥, [0, T) 3t > u(t) € (L)Y are continuous.

Remark 2. We point out that Lemma 1 gives sense to the initial con-
ditions w.(-, 0) = u(-, 0) = g¢(-, 0) € (L*(2))¥ in (1.11¢) and (1.11).

Our results relate to the convergence of the homogenization (Theorem 2)
and to the convergence of the energy integral (Theorem 3).

Theorem 2. .Assume that the same hypotheses as in Theorem 1 are sai-
isfied and (1.7) holds.

Let {uc} C A~ be solutions of (1.11s). Then there exists a subsequence {us} C {us}
such that

us— w in (L0, T; HAQN)Y weakly, we—u in (0%Q))¥ strongly,
where u €Y is a solution of (1.11).

(5) ie. g+, 0) € (CA(D))¥ and g(x, 0)ja0 = O.

(¢) We recall that Struwe’s proof was carried out without any smoothness assump-

tion on the coefficients aj;(x, f), which were only assumed to be bounded and meas-
urable: af; € L7(Q).
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Theorem 3. Under the same hypotheses as in Theorem 2 the energy in-
tegral converges

(1.14) [ @' (@, t) grad, , - grad, u’ dz df
e
— { [g.s] grad, u*-grad, w'dz dt I=1,..,N.
e

We carry out the proofs via the following lemmas which are stated under
the same assumptions as Theorems 2 and 3.

Lemma 2. Let {us} C SN be solutions of (1.11).. Then there ewists a sub-
sequence {ue} C {ue} such that we— w in (L0, T; HXQ))Y weakly, us—u in
(C@)¥ strongly, peul— p'u! in the vague topology o(4(Q), CAQ)) of the bo-
unded measures H(Q), 1 =1, ..., N.

Turthermore the « local energy » of ue converges to the «local energy» of u

(1.15) aﬁ'(w, t) grad, wh - grad, ul — [¢:;] grad, wi-grad, ' in A(Q)
vaguely, 1=1,..., N .

Lemma 3. Let {ug} CHY be solutions of (1.11).. Then there ewists a
subsequence {ue} C {ucy such that w..—wu in (L0, T; HyQ))Y weakly,
se—>u in (CNQ))¥ strongly, peul.— peut n M(Q) waguely, 1=1,..., N,
falsy y Uer, grad, ue)—o' in H(Q) vaguely, 1 =1,..., N, where ueH> is a
solution of the IBVPD

T
(1.16) J (= a1 <Be0(B), wHE) > gl + g1y <AUHE), 0(E)> g1oy) A
Qe
= [vlodzds + (g%, 0)|v(+, 0)) 2 l=1,..,N
Q
Yoe s N Q) s.5. v(-, T) = 0; ue (N 0@, u(-,0)= g(-, 0) € (C42)).

Lemma 4. The nxn matriz (grad, y)(z/e, t/e') € (L2(Q))™" works as a
first order corrector

(1.17) grad, u}. = (I — grad, )¢ grad, w* + 2% ,

where 2 — 0 in (L(Q))" strongly, I=1, ..., N.
Lemma 5. The following relationships hold
(1.18) vt = fi(u, grad,w) in LYQ) 1=1,..,N,

(1.19)  fi(-, -, ue, grad, ue) — fi(u, grad, ) n LYQ) weakly, 1=1,.., N .
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Remark 3. We point out that our smoothness assumption on the coef-
ficients a,;(y, T) € 1Y x[0, 7,]) is essential to obtain correctors % € L2(0, T3

Wr(Y)),§ =1, ..., n [6]. Actually we need (grad, y)(y, 7) € (L2(X % (0, 7p)))m<n
in the statements of Lemmas 4 and 5.

2 - Proof of Lemma 2. As the injection 0%**(@) — C*(@) is compact,
it follows from the e-uniform boundedness of {we} in (C*~*(())¥ that there
exists a subsequence {u«} C {us} such that

(2.1) us —u  in (C%@))¥ strongly .

Let us now show that {u} are ¢"-uniformly bounded in (L(0, T'; H H82)))¥ too.
To this end let us choose #l as the test function in (1.10)s

(2.2) <(9t —{“" ASI) ’U/slr, 16§t>' :LI(Q) '<f;l(‘, Sy 7]/5', gradx ua'), u;:>-L°°(Q) l == 1, ey N.

This makes sense because wu; € L0, I'; HX(Q)) N L°(Q), whereas Al
€ L0, T; H-(Q)) and 8,ul € L*(0, T; H-(2)) + L(Q). We obtain

<0sup, wl> = [O,uul dwdt = § [0,(ul(®, 1))* dwdt
e e
= %Qf [(we (2, T))* — (uze(m, 0))*] A = & (Jug (5 T) 2y — 195 0) | 22ar) 5
<ASul, ul> = [ a¥'(w, 1) grad, vl grad, u} do dt
e
(by (1.5)e) >)"Qf lgrad, u; |*dw dt = A|ul 120, 2: mcom 3
| 2@ <forly o5 tery grad, we), ug > 109 |
<Qﬂf;'(w, ty Uer, grad, ue) | |ug(z, t)|dzwdt (by (1.6))
<Mqu (1 + [grad, ue |?) Ao dt =ME(|Q |+ [ue I,z mbiome)  (bY (1.12))
A

< 2 (@1 + l1wel Ereo,z; aeama) -

Finally, by summing (2.2) over I, we get
(2.3) e [l cz2co,2; beamm <L s

where L does not depend on &.
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Therefore there exists a subsequence, which we shall denote by {ue},
such that

(2.4) we—u  in (L0, T; Hy(82)))" weakly,
where u € (C*(Q) N L2(0, T'; Hy(2)))~.

Let us now consider the distributions psule 2'(Q), 1=1,...,N. We
notice that they are bounded measures peul € M(Q), because, by (1.10): and
(1.6), pcul € L}Q). We shall now prove that, owing to (2.3), they are also
¢'-uniformly bounded. To this end let @'ccq and ¢e 2(Q) such that
0<p(®,t) <1, p®,1)|,=1; we have

2.5) 25U (@) < 910 =< 115U |5 9> a0
=L1(Q)'< ifsl'('y Ty Wery gTade Uer) [7 P> Lo9(Q) (by (1~6))

<X [ (1-+|grad, ue
e

) dwdt = E(|Q] - [ue “%ﬁ(o,m; E%(Q)))N)

(by (2.3)) <E(1Q|+I) I=1,..,N,

where the final constant does neither depend on & nor on @'cc@.

We notice that the ¢/-uniform boundedness of the measures p¢ul can also
be obtained by looking at the left hand side of (1.10)s VQ'cc @, let ¢ € D(Q)
such that 0<e(z, t)<1, @@, )y =1, then

(2.6) 25Ul (@) < g1 < 1971 |, ¥ 20
<J(]— U0, + l“g;(w, 1) 055 0:9]) dwdt
Q
< H“}s' “L’*(Q) “atq’"La(Q) + H“f; HL°°(Q) Hai '“’:’ ”Lz(Q) “81 (P”L’"(Q) (by the Poincaré inequa’ﬁtY)

< 0onst |4 | 2z, b 19| by <€(@)  (by (2:3)) 1=1,.., ¥,

where the constant ¢(Q') does not depend on &'.

Tt follows from (2.5) or (2.6) that there exist a subsequence, which we shall
still denote by {pcw}}, and a bounded measure '€ #(¢) such that PEUL —
in 4(Q) vaguely, I=1, ..., N.
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It could be shown, by a local energy method [1] and by taking (2.1) into
aceount, that

(2.7) peul — pPul  in #(Q) vaguely I=1,.., N.

We now turn to the proof of (1.15). Let ¢ € 2(Q); it follows from 2.1)
that guy — put in 0%Q) strongly. Then (2.7) implies

M@ =D Uy PUL by > g <DW PU> t=1.,N.
From this relationship, by identification, we deduce (1.15).
Proof of Theorem 3. We point out that the sequence
{a*'(», 1) grad, u’ - grad, u%} l=1,..,N,
is &¢/-uniformly bounded in L*(@), because
grad, up — grad, w' in (L¥Q))" weakly, =1, ..., N by (2.4) and
(2.8) a® (z, t) grad, u’ — [g,;] grad, v in (LA@))" weakly, l=1,..,N,

which is a straight-forward consequence of (2.7). Moreover, as we have just
seen, (1.15) holds, where [g;;] grad, w'-grad, w' € LY(Q). Hence (1.14) follows.

Proof of Lemma 3. We notice that, owing to (1.6) and (2.3), the
sequence {fi(, -, uer, grad, ue)} is ¢'-uniformly bounded in LY(Q)

f;’(" ty Wery gr&dfﬂus')!lLl(Q)<K( !QI +L2) l= L.,N ’

this constant being independent of &',
Therefore there exist a subsequence, which we shall still denote by {f'},
and a bounded measure »*e.#(Q) such that

(2.9) fo(ey s tery grad, ue) —o'  in #(Q) vaguely l=1,...,N.

We now turn to the proof of (1.16).

This system of variational equations makes sense because it involves cor-
rect dualities. It is obtained from (1.11). by passing to the limit as &'~ 0
and taking (2.4), (2.8), (2.9) into account.
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Proof of Lemma 4 (). It follows from the definition that the matrices
(I — grad, z)(@/e, tfe) € (L(Q))"*" have the following properties

(I —grad, x)*—1I in (L™(Q))™ weak *;
a*(I — grad, )¢ — [¢i] = j/u,-;(a(?h 7)(I — grad, x)(¥, T)) in (Lw(Q))an weak®,
where
/{u,r(“(l_gradu%)) = [///y’f(aij(y’ T) — (¥, T) (ali/a'l ) (Y, 77))] L k=1,...,7;
they are e-uniformly bounded in (L®(@))™"

(2.10) (I — grad, 7)< (%) -

By using these properties and (1.15), the following result is arrived at
Vyp e (2(Q)"

a?' (&, t)(grad, uls — (I — grad, 7)*p) - (grad, ul — (I — grad, 1))
— [q,;] (grad, u'—yp)- (grad, ' —yp) in M(Q) vaguely, I=1,..,N.

By taking (1.14) into account, the above result can be improved Vy e (2(Q))"
(2.11) oG ) (emdond — I gradu ) (5, 5)v)
(grad, ul — (I — grad, 7) (5, = )p) do dt
—>Qj [¢:5] (grad, ut — v)- (grad, ' — y) de dt l=1,...,N.

Now let ¢ > 0 be arbitrarily small and y'e (2(Q))" such that
(2.12) lgrad, wl — 9| gagu <0 .

It follows from (2.10) and (2.12) that
(2.13) I(I— grad, 2)¢' (grads u' — ") | guqm

< (I — grad, 2)¢ | oo grad, ! — y*] s <6d .

() The proof is similar to the one given by F. Murat for the elliptic case [8].
(8) We define

4
(X — grad, 2)°[l;c0 = ess sup {|(I — grad, x) (z, =) f: 5B & =1; (z,0)eQ}.
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Moreover, by using (2.11) and (1.5);, we get Ve'< e,
(2.14)  Mgrad, up — (I — grad, x)f 9| faeyn

<mgrad, w' — !¢ gn<mo?,
where m > 0 satisfies the condition |[q.,;]&|<m|&| YEe B (?). Let us consider

2 = grad, ul — (I — grad, y)¢ grad, w
= (grad, u} — (I — grad, x)*'y*) — (I — grad, ) (grad, u'— ") .

It follows from (2.13) and (2.14) that Ve'< s,

m
][zﬁ lzr@m <6 (0 +\/—;‘ ) .

This inequality, which holds Y6 > 0, implies (1.17).

Proof of Lemma 5. Let us write (1.17) in matrix form

.17y grad, ue = (I — grad, y)¢ grad, u + ze,
x

where 2 — 0 in (LXQ))™ strongly.
We shall prove (1.19) in two steps: first (a) we show that

(2.15) fz:'('7 *y Uery Qraly Ue) = fsl'('7 "y Uy (I — grad, 7()6’ grad, u) + ,).Sl' ’
where 75— 0 in L*(Q) strongly (I =1, ...A, N), and next (b) we show that
(2.16) - fi(, -, u, (I —grad, x)* grad, u) — fi(u, grad,w) in LY(Q) weakly,

1=1,..,N.

(a) We recall that [#e e, [%],00<M; moreover (2.1) holds. Therefore, if
we choose % > 0 arbitrarily small, we have |ue — u[,0<n Ve'< ¢, which im-

(®) If we denote by £ the space #(LX0, 1'; HY(RQ)), L¥0, T'; HX(R))), then
l4]e< m.
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plies property (1.7)

(2.17) 7o, )] < e[|+ L2 | 1T — grad, ) (5, )
grad, w |+ |2 |?) + efn) e in (z,4) I=1,..., N,

where ¢, (M), ¢(n) >0 and lim ¢,(n) = 0.
70
By integrating (2.17) over @ and recalling (2.10), we obtain

Ik | < e M) (1Q 1F 2er] 2 + ll2 |2 (T — grad, ) grad, wll;: + [#e )
+ 6(n) |Q ] <o (M) |2er| 1 (|Q [% +elgrad, wl . + |2 22) +02(n) Q| I=1,..,N;

therefore (1.17)" implies (2.15).

(b) Let 6 > 0 be arbitrarily small and ¢:Q — R¥, v: Q@ — R*¥ be staircase
functions such that [u — @] ,0<d, [grad, u —p],.<4.
‘We notice that

(2.18)  |Ife (- s u, T — gTade)E'gra'dx u) — fsl'(’; 5 @, (I —grad, X)S‘Q/’) "L*(Q)

<e(d +e6(d) 1=1,.., N,

where lim ¢,(0) = 0. This is obtained by integrating over @ the following
§~>0

inequality, which is an application of (1.7)
4
|fe (m’t 2, (L — gla‘dvx)( 7 /) grad, w) —f& (@t 9, (I— gradv%)( 7 8/)1/))[
(I(I gTa*duX)(n l) (g'rad IM’"_"/")]

+ (L — grad, ) (S,

L) (grad.u— )] [(T— grad, ) (5, )]

+(I— gmdyx)( 7 ,)(grad w—)|*) + e(8) (by (2.10))
<&(lgrad, w — y |+ |grad, w — || p(x, 1) |+ | grad, w — p|?)+e(0) a.e.in (z,7),
where I =1,..., N, ¢(6)>0 and lim ¢,(6) = 0. By (1.7) we also gef

00

(2-19) ”ﬂ)(ui gradx u) - ﬂ)((p7 1l") ”L‘(Q)<01(5 + 02(6)) l= 17 () N.
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Now we recall that, according to (1.9)

(2.20)

(0 @ (I—grad, x)° ) — fi(e, p) in LxQ) weakly  I=1,..,N.

At last from (2.18), (2.19) and (2.20) we deduce (2.16).

Proof of Theorem 2. This follows immediately from Lemmas 3 and 5.
We just notice that (1.19) allows us to extend the test functions’ space from

0

(1]
[21]

(3]

(4]

[5]

(6]
(7]
(81
[91

120, T; HYQ)) N HY0, T; H-(2)) 0 0°@Q)

L0, T; Hy(Q)) N H0, T'; H-4(2)) N I°(Q) .
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Sunto

Si considerano sistemi quasilineari, parabolici, in forma diagonale, con termine del
primo ordine guadratico nel gradiente spaziale.

Utilizzando 4l risultato di holderianite ottenuto in [9], si dimostrano, con melodi del
tipo energia e con un opportuno metodo dei « correttori», la convergenza dell’omogeneizza-
zione e la convergenza dell’iniegrale dell’energia.
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