DOMINGO CHINEA (*)

Invariant submanifolds of a quasi-K-Sasakian manifold (**)

Introduction

An invariant submanifold of a Sasakian manifold is Sasakian and minimal ([9], [10]). It is also known that an invariant submanifold of a K-contact manifold is K-contract and minimal ([2], [5]₁). The purpose of this paper is to show that similar results hold true for a more general class of manifolds, namely the class of quasi-K-Sasakian manifolds. We also obtain necessary and sufficient conditions in order that a manifold of this class be totally geodesic.

1 - Preliminaries

Let M be a manifold with an almost contact structure (F, ξ, η) and consider the manifold $M \times R$ (for the definitions and properties of almost contact structures we refer the reader to [1], [11]). We denote a vector field on $M \times R$ by (X, a(d/dt)), where X is tangent to M, t the coordinate of R and a is a C^{∞} function on $M \times R$. S. Sasaki and Y. Hatakeyama [8] define an almost complex structure J on $M \times R$ by

(1.1)
$$J\left(X, a \frac{\mathrm{d}}{\mathrm{d}t}\right) = \left(FX - a\xi, \eta(X) \frac{\mathrm{d}}{\mathrm{d}t}\right).$$

An almost contact structure is said to be *normal* if J is integrable.

^(*) Indirizzo: Departamento de Geometria y Topologia, Facultad de Matematicas, Universidad de La Laguna, Canary Isles, Spain.

^(**) Ricevuto: 9-V-1983.

Now, if g is a Riemannian metric on the manifold M with a (F, ξ, η) -structure, we define a Riemannian metric on $M \times R$ by

(1.2)
$$h((X, a \frac{d}{dt}), (Y, b \frac{d}{dt})) = g(X, Y) + ab,$$

and another by

$$h^0 = \exp\left[2\sigma\right]h,$$

where $\sigma: M \times R \to R$ is defined by $\sigma(x, t) = t$ for all $(x, t) \in M \times R$.

In [6] J. Oubiña proved that a (F, ξ, η, g) -structure is a contact metric structure if and only if the structure (J, h^0) in $M \times R$ is almost Kaehlerian; it is a Sasakian structure if and only if (J, h^0) is a Kaehlerian structure.

An (F, ξ, η, g) -structure is called a *quasi-K-Sasakian structure* if (J, h^0) is a quasi-Kaehlerian structure. Thus, a (F, ξ, η, g) -structure is quasi-K-Sasakian if and only if

$$(1.4) \qquad (\nabla_x F) Y + (\nabla_{FX} F) F Y = 2g(X, Y) \xi + \eta(Y) \nabla_{FX} \xi - 2\eta(Y) X ,$$

where $X, Y \in \chi(M)$ and ∇ is the covariant differentiation on M [6]. It follows that if (F, ξ, η, g) is a contact metric, K-contact metric or a Sasakian structure then (F, ξ, η, g) is a quasi-K-Sasakian structure. Moreover, in a quasi-K-Sasakian structure (F, ξ, η, g) we have

(1.5)
$$FX = \frac{1}{2} \left(F(\nabla_{FX} \xi) - \nabla_X \xi \right).$$

2 - Invariant submanifolds of a quasi-K-Sasakian manifold

A submanifold M of an almost contact metric manifold \tilde{M} with structure $(\tilde{F}, \xi, \tilde{\eta}, \tilde{g})$ is said to be *invariant* if $\tilde{F}X$ is tangent to M for any tangent vector X to M.

If the vector field ξ is never tangent to M, then the invariant submanifold M is an almost Hermitian manifold with the induced almost Hermitian structure (F,g), if ξ is always tangent to M, then M is an almost contact metric manifold with the induced almost contact metric structure (F,ξ,η,g) , where $FX=\widetilde{F}X$, $X\in\chi(M)$, ξ , η and g are the restrictions of ξ , $\tilde{\eta}$ and \tilde{g} in M (see [10]).

Let M be an invariant submanifold of a quasi-K-Sasakian manifold \tilde{M} , then the vector field ξ is always tangent to M. In effect, if we suppose that M is an invariant submanifold of the quasi-K-Sasakian manifold \tilde{M} , with the

vector field ξ never tangent to M, using the formula of Gauss (see [4], vol. II, p. 15) and (1.4), we obtain

$$(2.1) \qquad (\nabla_X F) Y + (\nabla_{FX} F) F Y = 0 ,$$

$$(2.2) \quad \alpha(X, FY) - \alpha(FX, Y) - \tilde{F}(\alpha(X, Y) + \alpha(FX, FY)) = g(X, Y)\tilde{\xi},$$

for any vector fields $X, Y \in \chi(M)$, where α denote the second fundamental form of M. In particular, setting X = Y in (2.2) we have

$$-\tilde{F}(\alpha(X, X) + \alpha(FX, FX)) = g(X, X)\tilde{\xi},$$

which is a contradiction.

Theorem 1. Any invariant submanifold M with induced structure (F, ξ, η, g) of a quasi-K-Sasakian manifold \tilde{M} is also quasi-K-Sasakian.

Proof. If \tilde{M} is a quasi-K-Sasakian, then, by (1.4),

$$(\widetilde{\nabla}_{x}\widetilde{F})Y + (\widetilde{\nabla}_{Fx}\widetilde{F})FY = 2\widetilde{g}(X,Y)\widetilde{\xi} + \widetilde{\eta}(Y)\widetilde{\nabla}_{Fx}\widetilde{\xi} - 2\widetilde{\eta}(Y)X,$$

for any $X, Y \in \chi(M)$. Thus, using the formula of Gauss we obtain

$$(\nabla_{\mathbf{X}}F)Y + (\nabla_{\mathbf{F}\mathbf{X}}F)FY = 2g(X,Y)\xi + \eta(Y)\nabla_{\mathbf{F}\mathbf{X}}\xi - 2\eta(Y)X,$$

for the tangential components, and

$$\alpha(X,FY) - \alpha(FX,Y) - \tilde{F} \big(\alpha(FX,FY) + \alpha(X,Y)\big) \, = 0 \; , \label{eq:delta_fit}$$

for the normal components.

From the first identity we conclude that M is a quasi-K-Sasakian manifold.

Theorem 2. Any invariant submanifold M of a quasi-K-Sasakian manifold is minimal and

(2.3)
$$\alpha(FX, FY) = -\alpha(X, Y)$$

for any $X, Y \in \chi(M)$.

Proof. Since \tilde{M} is a quasi-K-Sasakian manifold, we have

$$\alpha(X, FY) - \alpha(FX, Y) - \tilde{F}(\alpha(FX, FY) + \alpha(X, Y)) = 0$$
, where $X, Y \in \chi(M)$.

By symmetry, we obtain

$$\tilde{F}(\alpha(FX, FY) + \alpha(X, Y)) = 0.$$

Thus $\alpha(FX, FY) = -\alpha(X, Y)$, which proves our assertion.

Corollary 1. Any invariant submanifold M of a contact metric manifold \tilde{M} is minimal.

Some results of H. Endo, S. Tanno, K. Yano-S. Ishihara follow easily from Theorem 2, (see [2], Th. 2.2, p. 155; [9], Prop. 4.1, p. 457; [10], Prop. 4.3, p. 361).

Theorem 3. Let M be an invariant submanifold of a quasi-K-Sasakian manifold \tilde{M} . Then M is totally geodesic if and only if

$$(\widetilde{\nabla}_{FX}\alpha)(\xi, Y) = -(\widetilde{\nabla}_{X}\alpha)(\xi, FY)$$

for any vector fields X and Y on M.

Proof. By (1.5), (2.3) and using the definition of the covariant derivative for the second fundamental form α of M, (see [4] p. 25), we have

$$\begin{split} 2\alpha(FX,FY) &= \alpha\big(\widetilde{F}(\widetilde{\nabla}_{FX}\xi) - \widetilde{\nabla}_{X}\xi,FY\big) = -\alpha(\nabla_{FX}\xi,Y) - \alpha(\nabla_{X}\xi,FY) \\ &= (\widetilde{\nabla}_{FX}\alpha)(\xi,Y) + (\widetilde{\nabla}_{X}\alpha)(\xi,FY) \,. \quad \text{Thus} \\ \alpha(X,Y) &= -\frac{1}{2} \left((\widetilde{\nabla}_{FX}\alpha)(\xi,Y) + (\widetilde{\nabla}_{X}\alpha)(\xi,FY) \right) \,, \end{split}$$

which proves our assertion.

A similar result of M. Kon [5]₂ follows easily from Theorem 3.

Theorem 4. Let M be an invariant submanifold of a quasi-K-Sasakian manifold \widetilde{M} with constant sectional curvature. Then M is totally geodesis if and only if

$$(\widetilde{\nabla}_{FX}\alpha)(\xi, X) = 0$$
 for any $X \in \chi(M)$.

Proof. By Theorem 3, we have

(2.4)
$$\alpha(X,X) = -\frac{1}{2} \left((\widetilde{\nabla}_{FX} \alpha)(\xi,X) + (\widetilde{\nabla}_{X} \alpha)(\xi,FX) \right).$$

But, if \tilde{M} has constant sectional curvature then (see [4])

(2.5)
$$(\widetilde{\nabla}_{x}\alpha)(Y,Z) = (\widetilde{\nabla}_{r}\alpha)(X,Z)$$
 for any $X, Y \in \chi(M)$.

From (2.4) and (2.5), we conclude that

$$\alpha(X, X) = -(\widetilde{\nabla}_{FX}\alpha)(\xi, X)$$

which proves our assertion.

Acknowledgment. I wish to express my hearty thanks to L.A. Cordero and J.A. Oubiña for several coments useful in the preparation of this paper. I am also very grateful to G. B. Rizza for his valuable suggestions.

References

- [1] D. E. Blair, Contact manifolds in Riemannian geometry, Lectures Notes in Math. 509 (1976), Springer, Berlin-Heidelberg-New York.
- [2] H. Endo, Invariant submanifolds in a K-contact Riemannian manifold, Tensor (N.S.) 28 (1974), 154-156.
- [3] Y. HATAKEYAMA, Y. OGAWA and S. TANNO, Some properties of manifolds with contact metric structures, Tôhoku Math. J. 15 (1963), 176-181.
- [4] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. II, John Wiley and Sons, New York 1969.
- [5] M. Kon: [•] A note on invariant submanifolds in a K-contact Riemannian manifold, Tensor (N.S.) 27 (1973), 158-160; [•] Invariant submanifolds of normal contact metric manifolds, Kodai Math. Sem. Rep. 25 (1973), 330-336.
- [6] J. Oubiña, A classification for almost contact structures (to appear).
- [7] S. Sasaki, On differentiable manifolds with certain structures which are closely related to almost contact structure (I), Tôhoku Math. J. 12 (1960), 459-476.
- [8] S. SASAKI and Y. HATAKEYAMA, On differentiable manifolds with certain structures which are closely related to almost contact structure (II), Tôhoku Math. J. 13 (1961), 281-294.
- [9] S. Tanno, Isometric inmersion of Sasakian manifolds in spheres, Kodai Math. Sem. Rep. 21 (1969), 448-458.
- [10] K. Yano and S. Ishihara, Invariant submanifolds of an almost contact manifold, Kodai Math. Sem. Rep. 21 (1969), 350-364.
- [11] K. Yano and M. Kon, CR-submanifolds of Kaehlerian and Sasakian manifolds, Progress in Math., Birkhäuser, Boston-Basel-Stuttgart 1983.

