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ALFRED GRAY (*)

A product formula for the volumes of tubes

about Kihler submanifolds of complex euclidean space

1 - Introduction

The purpose of this note is to establish two formulas for the volumes of
tubes about complex submanifolds of C»

" 1
(A) VI = — ify(RP)/\(mz + F)y»,
m-n
(B) Vl(,::zm(,\/lrf + ,'.g) :bgo V’qb(rl) Vgﬂ“"—b(?‘z) )

Here P and @ are Kahler manifolds for which the relevant integrals converge.
In formula (A), y(RP) denotes the total Chern form associated with the cur-
vature tensor R” of P, and I' denotes the Kiahler form of P. Because the dif-
ferential form y(RP)A (mr®+ F)* is not homogeneous, all terms of degree dif-
ferent from the dimension of P must be discarded when the integral on the
right hand side of (A) is computed.

I shall show that when P c C as a Kihler submanifold, the volume VS"(r)
of a tube of radius » about P in C» is given by (A). However, it is important
to observe that the right hand side of (A) makes sense for any Kihler mani-
fold P for which the integral converges. When P is not given as a complex
submanifold of C», formula (4) may be regarded as a definition instead of a
theorem, because both ¥ and y(RP) are intrinsic to P. With this interpretation
both sides of (B) always make sense.

(*) Address: Department of Mathematics, University of Maryland, College Park,
20742 Maryland, USA.
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For example when P is compact, Vﬁ"(a‘) is just the Euler characteristic
%(P) of P. Thus (B) is a generalization of the well-known formula
2P %Q) = 7(P)%(Q)-

There are two generalizations of formula (A). The first treats Kihler sub-
manifolds of a Kihler manifold M whose sectional curvature K* has con-
stant sign.

Theorem 1.1. Let P be a Kdihler submanifold of a complete Kihler
manifold M whose sectional curvature K is always nonnegative or always nonpo-
sitive. Assume that P is relatively compact and topologically embedded, and that
r> 0 is not larger than the distance from P to its nearest focal point, Then

(1) H¥>0 implies

VEr) < L [p(Br— R Py 2

n! g (m—q)! vol(F),

(ii) <0 implies

1
¥y > oy (B — RO\t + )

Note that if B is any tensor field having the same symmetries as the curvature
tensor of a Kahler manifold it is possible to define the total Chern form y(I2).
In particular y(RF— R¥) makes sense, where E® and R are the curvature
operators of P and M.

The second generalization of formula (A) treats an arbitrary oriented
2-dimensional submanifold P of R». Let y be the Huler form of P. Thus
¥ = (27)"1KPw, where K7 i3 the sectional curvature of P and w is the Rieman-
nian volume form determined by the orientation of P. Of course when P is
compact, the Gauss Bonnet theorem states that [y = y(P). The following for-
mula holds r

(or2)ni2—1 2arty,
!}!{w + n } -

(C) VE(r) =

7'57’2)"/2 - @ nf2
=Wz =1 JA4+nAG+ =)

(nf2)! 2 7

If P c R» the Vf"(?‘) is the volume of a tube of radius » about P; otherwise (O)
may be taken as a definition. More generally

Theorem 1.2. Let M be a complete Riemannian manifold whose sectional
curvature has constant sign. Assume that P is relatively compact and topologically
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embedded, and that » > 0 is not larger than the distance between P and its nearest
focal poimt. Then KM=0 implies

5 11/2 1
(1.1) Va(r) < ?(;') f{ + 2%,/_-11‘10))}.

It K< 0 the inequality is reversed in (1.1).

Formulas (A) and (C) may be regarded as sharpened versions of the Weyl
tube formula [4] for the volumes of tubes in R»

(n,)«Q)(n—a)l‘z [a/2} & (_RP)72°

“ae = dim P .
(=R & m—g+2) - m—gF2e’ 1=

1.2y Vi@ =

Weyl showed that the k,,(RF) are integrals of certain functions of the curva-
ture operator R” of P. Hence Vﬁ"(r) does not depend on the particular way P
is immersed in R» but only on the Riemannian metric of P. For this reason if P
is not given as a submanifold of R», (1.2) can be used as a definition provided
all of the integrals converge. Thus for each » one can associate with the Rieman-

nian manifold P the function r — VX (r).

Now 7 — VE'(r) is a metric invariant, but can one say more? The answer
is yes for Kihler manifolds. Recall (see for example [1], p. 106) that a
Kihler deformation consists of a change of Kihler form F to F 4-id'd"f,
where f is any differentiable real valued function on M.

Theorem 1.3. ILet P be a compact Kikler manifold with Kdihler form I,
and define VE(r) by formula (A). Then VE (v) is the same for all Kdihler defor-
mations of I

For compact oriented two dimensional manifolds the situation is even better.

Theorem 1.4. Let P and Q be compact two dimensional manifolds. Iiw n.
Then the following conditions are equivalent:

(i) P and Q are homeomorphic and vol (P) = vol (@);
(i) VE(r) = Va(r).

2 - Fermi coordinates and Fermi fields

The computations necessary for formula (A) and Theorem 1.1 are most
conveniently performed in terms of special vector fields called Fermi fields [5].
To explain this notion let P be a submanifold of a Riemannian manifold M
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and let exp, be the exponential map of the normal bundle ». For p € P choose
a coordinate system (v, ..., ¥,) in a neighborhood of p in P and choose ortho-
normal sections #,44, ..., B, of ». Then the Fermi coordinates of P c M (1'elative
to (Yiy -y ¥e) a0d HEypy, ..., B,) are given by

@,(exp, (3 t;H;(m)) = ya(m) a=1,..,q,
w{exp, (3, t,B,(m)) =t i=q+1,..,n0.

Definition. Let (2, ...,%,) be a system of Fermi coordinates for P c M.
A vector field on M is said to be a Fermi field if it is a constant linear combina-
tion of the coordinate vector fields o/cmy, ..., 0/0x,. There are two kinds of
Fermi fields: fangential (those that are constant linear combinations of
dlexy, ..., ofcx,) and mormal (those that are constant linear combinations of
0[/0%4t1y -.-y Of0x,). The spaces of tangential, normal, and all Fermi fields will
be denoted by Z(P,p)', Z(P, p)-, and Z(P,p) respectively.

In addition to Fermi fields it will be useful to consider the function ¢ and
the vector field IV defined in a neighborhood of P in M as follows

a(m) = d(m, P), Ny(g) = p'(8),

where d is the distance function of M and y is any unit speed geodesic normal
to P. In terms of Fermi coordinates and Fermi fields

n noox, 0
ot= Y} and N=Y = —
=g 1 =ar1 O 0%

The caleculus of ¢, N and the Fermi fields is developped in [5]. The key facts
are summarized in the following lemma.

Lemma 2.1. Let X, YeZ(P,p), 4, Be Z(P,p)*. Then

(i) V.NN =0
(i) N = gradg (generalized Gauss Lemma)
(i) [X, Y]=[4, B] = [X, 4] = [N, 4] = 0
(iv) [N,0X]= (Xo)¥
(v) VgV U+ REN=0 for U= A+ 0X (Jacobi’s equation).

Proof. (i) is obvious from the definition and so is (iii). For the proof
of (ii), which is somewhat complicated, see [5]. Note that (ii) implies that
N(s) = 1. For (iv) one calculates as follows '
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D

n T, O n 1 ;s
_‘? et 4 Jr—f P a1 4 —— i ___1,17 1
[N,0X]= (No)X -+ 1%11(6) 5, X+ igl{ - X(z;) + = X(0)} 5

2,

~
o

ox;

LD
=X—3 J;(a;,-)al—q}i%—X(a)z = X(0)N .

als

Finally for (v) the computations are
Vi Vi(0X) = V[N, 0X] + VoV, N = Vy((X0)N) — RE N + Vi o) ¥
= (NXo)N— R ;N =— Ry N

and VyVyA = VyV,N=—RIN.

3 - The Riccati equation for the second fundamental forms

Let § be the (1,1) tensor field defined on a neighborhood of P in M by
SU=—V,N.

Then geometrically the restriction of S to a tubular hypersurface P, at a

distance ¢ from P is just the second fundamental form of P. Also let Ry be the
(1,1) tensor field given by RyU = R¥ N.

Lemma 3.1. Vy(8) = 82+ By.

Proof. Let me M be near but not on P. Then the tangent space M,
is spanned by vectors of the form (4 4 ¢X), where A is a tangential Fermi
field and X is a normal Fermi field. Thus it suffices to prove

VN(S) U _ (82 + R‘\r) U 5
where U= 4 4+ ¢X. In faet
= [VN) VU]N+V[N,U]N+ S‘JU=__. NU+ SZU-

Denote by S(¢) the second fundamental form of the tubular hypersurface P,.
Also let R(f) denote the restriction of Ry to P,. Then Lemma 3.1 can be rein-
terpreted as
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Corollary 3.2. S'(t) = S{#)*+ R(t).

Next let w be a volume form on M defined near P with |w| =1, and
let and let (»,...,#,) be a system of Fermi coordinates such that
(00w A ... \O[0w,) > 0. For uwe P} with |u| =1 put

0

0z,

0
0u(t) = © (5= A A 50) (7(0)) 5

where ¢t — () is the unit speed geodesic in M with ¢(0) = p and 3'(0) = u.
Lemma 3.3. (d/d¢)In6,() = — ((n— g— 1)/t + tr8(z)).

Proof. It is clear that 0, does not depend on the choice of (oriented)
Fermi coordinates at p = ¢(0). Thus the system may be chosen so that

0

awq+1

= 7'(0).

P

Then {0/0@],, ..., 0/0w,|,} forms an orthonormal basis for M . Write

0

" Ba,

0

0
V —
» a‘77«-}-1 ’

—A-a y iz—é:v:

?

)
rd 7

for a=1,..,qg and i =q -+ 2,...,n. Then
0ult) = (AN NANANAX g2 A A X))
0.(1) = Nox(di A . AAANAX s Ao AX)(2)
= {FE: O(AN AV AN AANNAX A AKX L)
+ 3 (s AAANA K epa o AV T iAo AX)HE)

i=q+2

= {3 (LA AVaa N A ALAN A T go o A X)

a=1

+ 3 (A AAANA X gz A e A (Ve NIV, XA Xa)HE)

i=gqi2

= {3 (iAo Al— SAIN . AANFA X gio\ . A X )

a=1

n 1

-+ 2+20 (AN CAANANAX oA A(— 8K — t—Xi)/\.../\X,,)} (t)
ie=q

E— (n—____g_i + tr 8(2)) 0.(t) .

Hence the lemma follows.
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For certain simple differentiable manifolds M (and arbitrary P in M) it is
possible to solve explicitly the differential system §'(t) = §()*- R(¢). Con-
sequently 6,(¢) can also be found explicitly. For example when M is flat one has

Lemma 3.4. Let P be a submanifold of a flat space M. Then along the
geodesic y normal to P with y(0) = p and p'(0) = u (where u € P} and |ju]| = 1)

Tl —1T) 0
0 1T

(3.1) S(t) = (

Proof. Choose an orthonormal frame field {&,(t), ..., B.(t)} along y that
diagonalizes S(f) at each ¢

S@ B (1) = =) E, () , o 5 q-F1

Here it may be assumed that {E(0), ..., Z,(0)} and {F.(0), ..., B.(0)} are
orthonormal bases of P, and P;L respectively, and that F,(0) == u. It follows
from Corollary 3.2 and the assumption that M is flat that

(3.2) w0 (1) = #(t)? e=1,..,,9+2,..,n,

except possibly for a finite number of points where %, coincides with some zx;.
It is clear that [xe,(f)], ..., |#.(f)] become infinite as ¢ — 0. Moreover, each
t—#x,(t) is an increasing function because of (3.2). It follows that
#e12(0) = ... == 2,(0) = — co. Furthermore z,(0), ..., #,(0) are finite. Thus
solving (8.2) and using these initial conditions one finds that

#a(t) = #(0)(1 — 1:4(0))2 a=1,..,q,
(3.3)
a(t) = — ¢ t=qg+2,...,n.

At least (3.3) holds where there is no differentiability problem. Moreover the
submanifold P can always be deformed slightly so that all of the z,(t)’s are
distinet. Then (3.3) holds for the deformed submanifold without exception.
Since (3.3) is a relation not involving derivatives, it must also hold for the
original submanifold. Finally (3.3) can obviously be rewritten as (3.1).

Lemma 3.5. Let P be a submanifold of a flat space M. Then

(3.4) 0,(t) = det (I — tT.) .
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Proof. Using lemmas (3.3) and (3.4) one finds

g —1 ’ d
(35 go=— (Lg—~ it S(0)=tr (Lol — 1)) = T trin (I—1T,) .

Using the relation e = det (e?), (3.5) can be written as
d d
(3.6) T In 0,(t) = o In det (I —¢7T,) .

Since 6,(0) = 1 (3.6) may be integrated to yield (3.4).

In [5] generalizations of lemmas 3.4 and 3.5 to nonflat Riemannian mani-
folds are given. Let M be a complete Riemannian manifold and denote by I
the sectional curvature of M. Assume that K is always nonnegative or non-
positive. Then the generalization of equation (3.2) is

(3.7) x;(t)<xa(t)2 for K¥>0, z;(t)>;c“(t)2 for K¥<0.

This is a consequence of Corollary 3.2. Although the equation §'(¢)=8(t)*-R()
in general cannot be explicitly solved, at least inequalities for the prin-
cipal curvatures can be obtained. A generalization of (3.3) (which follows
from (3.7)) is

%a(t) < %a(0) (1 — B4(0) )1 a=1,..,q,
(3.8)
()< (— 1)t T=q-+2,..,%.

for K¥>0. When E™<0 the inequalities are reversed. The from (3.8) fol-
lows a generalization of Lemma 3.5.

Lemma 3.6. LetPbea submanifold of a complete Riemannian manifold M.
Assume EM is always nonnegative or always nonpositive. Then

0.()<det (I—tT,) for K¥>0, 0,(t)>det (I — tT,) for E*<0.
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4 - Relations between Chern forms and the change of volume factor

Let P be an almost Hermitian manifold of complex dimension ¢, and let I
be any tensor field on P that has the same symmetries as the curvature tensor
of a Kihler manifold. Let {E,, JE,, ..., B,, JE,} be a local frame field on P.
Then the complex curvature forms of R with respect to this frame field are the
2-forms defined by

Eup(XANY) = RE,, Epxy \/"’—lRE,, JEp XY

for complex vector fields X, ¥ on HM. Then by definition the total Chern form
p(R) of B is

vV 1
(4.1) YB) = det (S + 5 Fu)

(see for example [4] for this notation).
The individual Chern forms are determined by means of the decomposition

Y(B) =1 4 piB) + ... + 7)),  vye(B)e A*(P).

It is also possible to form the ¢'* power of B (see for example [2], [3]).
The definition ean be given inductively via the formulas E°=1 and

2¢

Rc(Xl/\ ---/\ch)(y1/\ A Yzc) - z (“ 1)i+5+k+LRx¢x,YkY;

Zydykylmel

BN AZA AL AZ XA AT A e AT A A T o)

Then the complete contraction of R° is

Co(R) = 3 RA(Bo A oo Ay ) (Bay AN Fy) 5

Qg Gioml

where {E,, ..., Hy,} is énny local orthonormal frame on P. In [6] it is shown
that it is possible to express C2(Re) in terms of the Chern forms of R and the
Kihler form 7.

Lemma 4.1. ZLet R be a tensor field on an almost Hermitian manifold M
that has all of the symmetries of the curvature tensor field of a Kdahler manifold.
Then

(g—o)!
(4.2) PHEE

C2(Re) = (270)° (yo(R) AT, él" i
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Proof of formula (A). Let S=2-1(1) denote the unit sphere in Pj.
From (3.4) it follows that

st(t) dae
g2n —*2'1-—1(1)

(4.3)

[ Cﬂc(( P)e )tzc
= det (I —t7)du = 25
S‘zn—:!a.r—l(l) ( ) oo el(2e)12¢ ' (n—q 4 ¢)

The details are given in [5]. In fact this is the heart of the proof of the Weyl
tube formula. In [5] it is also shown that

(4.4) V() = jr [ 0.(t) dudPdt .

o P gon—2¢~1(y

Tn (4.4) M is an arbitrary Riemannian manifold. Together (4.3) and (4.4) yield

a /)-20

(£.5)  VE0)= (Y

& oel(2e)! 2¢(n — g+ o) J‘O%( (RP)e)dP .

Here P is any submanifold of real dimension 2¢ for which [C2((RrF))dP
P

converges for ¢ = 0, ..., ¢. Formula (4.5) is just the Weyl tube formula for a
submanifold of an even dimensional Buclidean space. When P is a complex
submanifold of C», (4.2) and (4.3) combine to yield

VW) =3 (orz)rete [ po(BPY AT, -Fa> ap
? Sg—e)ln—qg+ce)!l;
(4.6)
q (nrz)n—qJ—c
oo F'I_
2 ot =g F a1 7 EIN

because the volume element of P is dP = (1/q!)Fe.

On the other hand when the expression y(RF)A (wr2--I) is integrated
over P all terms not of degree 2¢ can be eliminated. Hence (using the binomial
theorem) it follows that

lj‘ (RP)A n,z+p),z_§q: iﬂ_)”—_fy (REYAF*
! &5 s ki —k)! ol
(7”-2)11—(14-6

S (g—o)tn—q-e)! f}’c RPYATa-e

Now formula (A) follows from (4.6) and (4.7).
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Proof of Theorem 1.1. Assume K¥>0 (the proof when K¥<0 is
analogous). Just as (3.4) implies (4.3) it follows from Lemma 3.6 that

f 9.(t) dae < f det (I —t7,) du
s2n~2qf1(1) 52n—2¢1-1(1)
(4.8)
. » q C?.c (RP___RM)C 12¢
:Znﬂlz ‘9(‘{)6-[1 —) .
& oel2e)! 20 (m — g+ ¢)

Now the rest of the proof proceeds exactly as the proof of formula (A). The
only differences are that — R” is used instead of R” and = is replaced by <.

Proof of formula (C). For dim P =2 the Weyl tube formula re-
duces to
Iy (BP) v2

noy (ﬂy-z)n/2~1 ) - .
(4.9) VE(r) = wp—1)1 {ko (B?) 4+ =——1} .

Here ky(R?) = vol (P) and

To(RP) =} [ 2(BP)AP = [ KPP = 2ay(P) = 2 | g
P P

P

by the Gauss Bonnet theorem. Hence (4.9) can be rewritten as

- (757-2)7112—1 275%7-2
RAC ,
V') = ()2 —1)! ,:f {o + n }

(4.10)
2ynf2
=T A Ly

T o(m2)! g 7r?

Proof of Theorem 1.2. The proof is similar but one use the fact
that ky(RP — RYM) = ky(RP) — ky(BY) = [(2my — KM w).

P

5 = Proof of formula (B)

Let P and @ be complex submanifolds of C* and C™ with complex dimen-
sions p and ¢ respectively. Let I, and F, be the Kahler forms and R? and R°
the curvature tensor fields. Then the product Kihler manifold P x¢ has Kihler
form F = F,+ F, and curvature tensor field R™%= RF 4- B° Moreover the
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Whitney sum theorem implies the following relation between the various Chern
forms

(5.1) P(RTC) = y(RIAY(R) .

The Whitney sum theorem is usually stated for Chern classes instead of Chern
forms, so that strictly speaking (5.1) is a refinement. In any case (5.1) is easily
established using (4.1) and the faet that

4 0
det (; p)=detddetB.

Using formulas (A) and (5.1) the proof of formula (B) is as follows

1 )
.r» V(RIXQ)/\( ( —*' —-l—.F -—}—-I’))nﬂ-n

Ve (Vit f ) = ——
(Vi +72) (m 4 n)! pxq

PXQ

mtn (75(7-% + Fl))b/\(ﬂ(Tg . _F'g))m+n-b

S YEINEIN 2 bi(m - n—b)!
= i {l I P BN (w(r + FuP) 3 A S j’ (RO ((rs 4 Fy))mtn-v}
= = B ; 1 1 (m—]-n-b ' y T T2 5

mtn co Cman-b
= > V&) Vs (7).
b=0

6 = Deformations

Proof of Theorem 1.3. The proof is elementary and essentially the
same as that of [1], p. 117. Let F - F + ¢d’'d"f be a Kihler deformation.
The metric also changes, but at any rate the total Chern form of the new metric
has the form y(RP) -4 de. But then

(P(B7) + da) A (2 + F + 107 &7f) = p(R)A (wr* + F)* + de
for some (nonhomogeneous) differential form e. Thus by Stokes’ theorem

Ve = =
n!

§ (P(R?) + da)A(r? + F + id’ d"f)
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Proof of Theorem 1.4. If P and @ are homeomorphic then
1P)= %(@). If in addition vol (P)= vol (@) then formula (C) implies
Vi) = V<. '

Conversely if Vf"(r) = Vf;“(r), then vol (P)= vol (@) and y(P)= 7(@).
Because P and @ are both orientable it follows that P and ) are homeomorphie.
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