## ALFRED GRAY (\*)

# A product formula for the volumes of tubes about Kähler submanifolds of complex euclidean space

## 1 - Introduction

The purpose of this note is to establish two formulas for the volumes of tubes about complex submanifolds of  $C^n$ 

$$V_{_{P}}^{\mathbf{C}^{\mathbf{n}}}(r) = \frac{1}{n!} \int\limits_{_{P}} \gamma(R^{P}) \wedge (\pi r^{2} + F)^{n} ,$$

(B) 
$$V_{P \times Q}^{C^{n+m}} \left( \sqrt{r_1^2 + r_2^2} \right) = \sum_{b=0}^{m+n} V_P^{C^b}(r_1) \ V_Q^{C^{n+m-b}}(r_2) \ .$$

Here P and Q are Kähler manifolds for which the relevant integrals converge. In formula (A),  $\gamma(R^p)$  denotes the total Chern form associated with the curvature tensor  $R^p$  of P, and F denotes the Kähler form of P. Because the differential form  $\gamma(R^p) \wedge (\pi r^2 + F)^n$  is not homogeneous, all terms of degree different from the dimension of P must be discarded when the integral on the right hand side of (A) is computed.

I shall show that when  $P \subset \mathbb{C}^n$  as a Kähler submanifold, the volume  $V_P^{\mathbb{C}^n}(r)$  of a tube of radius r about P in  $\mathbb{C}^n$  is given by (A). However, it is important to observe that the right hand side of (A) makes sense for any Kähler manifold P for which the integral converges. When P is not given as a complex submanifold of  $\mathbb{C}^n$ , formula (A) may be regarded as a definition instead of a theorem, because both F and  $\gamma(\mathbb{R}^p)$  are intrinsic to P. With this interpretation both sides of (B) always make sense.

<sup>(\*)</sup> Address: Department of Mathematics, University of Maryland, College Park, 20742 Maryland, USA.

[2]

For example when P is compact,  $V_P^{\mathbf{C}^{\mathbf{c}}}(r)$  is just the Euler characteristic  $\chi(P)$  of P. Thus (B) is a generalization of the well-known formula  $\chi(P \times Q) = \chi(P)\chi(Q)$ .

There are two generalizations of formula (A). The first treats Kähler submanifolds of a Kähler manifold M whose sectional curvature  $K^M$  has constant sign.

Theorem 1.1. Let P be a Kähler submanifold of a complete Kähler manifold M whose sectional curvature  $K^M$  is always nonnegative or always nonpositive. Assume that P is relatively compact and topologically embedded, and that r>0 is not larger than the distance from P to its nearest focal point, Then

(i)  $K^{M} \geqslant 0$  implies

$$V_{P}^{\text{M}}(r)\leqslant\frac{1}{n\,!}\int\limits_{P}\gamma(R^{\text{P}}-R^{\text{M}})\wedge(\pi r^{2}+F)^{\text{n}}\leqslant\frac{(\pi r^{2})^{n-q}}{(n-q)\,!}\operatorname{vol}\left(P\right)\;,$$

(ii)  $K^{M} \leqslant 0$  implies

$$V_P^M(r) \geqslant \frac{1}{n!} \int\limits_P \gamma(R^P - R^M) \wedge (\pi r^2 + F)^n$$
.

Note that if R is any tensor field having the same symmetries as the curvature tensor of a Kähler manifold it is possible to define the total Chern form  $\gamma(R)$ . In particular  $\gamma(R^p - R^M)$  makes sense, where  $R^p$  and  $R^M$  are the curvature operators of P and M.

The second generalization of formula (A) treats an arbitrary oriented 2-dimensional submanifold P of  $\mathbb{R}^n$ . Let  $\chi$  be the Euler form of P. Thus  $\chi = (2\pi)^{-1}K^p\omega$ , where  $K^p$  is the sectional curvature of P and  $\omega$  is the Riemannian volume form determined by the orientation of P. Of course when P is compact, the Gauss Bonnet theorem states that  $\int_P \chi = \chi(P)$ . The following formula holds

$$({\bf C}) \qquad V_{_{P}}^{R^{n}}(r) = \frac{(\pi r^{2})^{n/2-1}}{(n/2-1)!} \int\limits_{\bf P} \{\omega + \frac{2\pi r^{2}\chi}{n}\} = \frac{(\pi r^{2})^{n/2}}{(n/2)!} \int\limits_{\bf P} (1+\chi) \wedge (1+\frac{\omega}{\pi r^{2}})^{n/2} \; .$$

If  $P \subset \mathbb{R}^n$  the  $V_P^{\mathbb{R}^n}(r)$  is the volume of a tube of radius r about P; otherwise (C) may be taken as a definition. More generally

Theorem 1.2. Let M be a complete Riemannian manifold whose sectional curvature has constant sign. Assume that P is relatively compact and topologically

embedded, and that r > 0 is not larger than the distance between P and its nearest focal point. Then  $K^{M} \ge 0$  implies

$$(1.1) V_P^{M}(r) \leqslant \frac{(\pi r^2)^{n/2-1}}{(n/2-1)!} \int_{P} \left\{ \omega + \frac{r^2}{n} \left( 2\pi \chi - K^{M} \omega \right) \right\}.$$

If  $K^{M} \leq 0$  the inequality is reversed in (1.1).

Formulas (A) and (C) may be regarded as sharpened versions of the Weyl tube formula [4] for the volumes of tubes in  $\mathbb{R}^n$ 

$$(1.2) \qquad V_{P}^{R^{n}}(r) = \frac{(\pi r^{2})^{(n-q)/2}}{\left((n-q)/2\right)!} \sum_{c=0}^{\lceil q/2 \rceil} \frac{k_{2c}(R^{p}) r^{2c}}{(n-q+2) \ \dots \ (n-q+2c)} \, , \ \ q = \dim P \, .$$

Weyl showed that the  $k_{2c}(R^p)$  are integrals of certain functions of the curvature operator  $R^p$  of P. Hence  $V_P^{R^n}(r)$  does not depend on the particular way P is immersed in  $\mathbb{R}^n$  but only on the Riemannian metric of P. For this reason if P is not given as a submanifold of  $\mathbb{R}^n$ , (1.2) can be used as a definition provided all of the integrals converge. Thus for each n one can associate with the Riemannian manifold P the function  $r \to V_P^{R^n}(r)$ .

Now  $r \to V_p^{\mathbb{R}^n}(r)$  is a metric invariant, but can one say more? The answer is yes for Kähler manifolds. Recall (see for example [1], p. 106) that a Kähler deformation consists of a change of Kähler form F to F + id'd''f, where f is any differentiable real valued function on M.

Theorem 1.3. Let P be a compact Kähler manifold with Kähler form F, and define  $V_P^{C^n}(r)$  by formula (A). Then  $V_P^{C^n}(r)$  is the same for all Kähler deformations of F.

For compact oriented two dimensional manifolds the situation is even better.

Theorem 1.4. Let P and Q be compact two dimensional manifolds. Fix n. Then the following conditions are equivalent:

- (i) P and Q are homeomorphic and vol(P) = vol(Q);
- (ii)  $V_p^{\mathbf{R}^n}(r) \equiv V_q^{\mathbf{R}^n}(r)$ .

## 2 - Fermi coordinates and Fermi fields

The computations necessary for formula (A) and Theorem 1.1 are most conveniently performed in terms of special vector fields called Fermi fields [5]. To explain this notion let P be a submanifold of a Riemannian manifold M

[4]

and let  $\exp_r$  be the exponential map of the normal bundle r. For  $p \in P$  choose a coordinate system  $(y_1, \ldots, y_q)$  in a neighborhood of p in P and choose orthonormal sections  $E_{q+1}, \ldots, E_n$  of r. Then the *Fermi coordinates* of r0 (relative to  $(y_1, \ldots, y_q)$  and r0 are given by

$$egin{aligned} x_aig(\exp_vig(\sum t_j E_j(m)ig) &= y_a(m) & a = 1, ..., q \ , \\ x_iig(\exp_vig(\sum t_j E_j(m)ig) &= t_i & i = q+1, ..., n \ . \end{aligned}$$

Definition. Let  $(x_1, ..., x_n)$  be a system of Fermi coordinates for  $P \subset M$ . A vector field on M is said to be a Fermi field if it is a constant linear combination of the coordinate vector fields  $\partial/\partial x_1, ..., \partial/\partial x_n$ . There are two kinds of Fermi fields: tangential (those that are constant linear combinations of  $\partial/\partial x_1, ..., \partial/\partial x_n$ ) and normal (those that are constant linear combinations of  $\partial/\partial x_{q+1}, ..., \partial/\partial x_n$ ). The spaces of tangential, normal, and all Fermi fields will be denoted by  $\mathcal{X}(P, p)^T$ ,  $\mathcal{X}(P, p)^\bot$ , and  $\mathcal{X}(P, p)$  respectively.

In addition to Fermi fields it will be useful to consider the function  $\sigma$  and the vector field N defined in a neighborhood of P in M as follows

$$\sigma(m) = d(m, P)$$
,  $N_{\gamma(s)} = \gamma'(s)$ ,

where d is the distance function of M and  $\gamma$  is any unit speed geodesic normal to P. In terms of Fermi coordinates and Fermi fields

$$\sigma^2 = \sum_{i=q+1}^n x_i^2$$
 and  $N = \sum_{i=q+1}^n \frac{x_i}{\sigma} \frac{\partial}{\partial x_i}$ .

The calculus of  $\sigma$ , N and the Fermi fields is developed in [5]. The key facts are summarized in the following lemma.

Lemma 2.1. Let  $X, Y \in \mathcal{X}(P, p)^{\perp}, A, B \in \mathcal{X}(P, p)^{T}$ . Then

- (i)  $\nabla_{\!\scriptscriptstyle N} N = 0$
- (ii)  $N = \operatorname{grad} \sigma \text{ (generalized Gauss Lemma)}$
- (iii) [X, Y] = [A, B] = [X, A] = [N, A] = 0
- (iv)  $[N, \sigma X] = (X\sigma)N$
- (v)  $\nabla_{N}\nabla_{N}U + R_{N}^{M}N = 0$  for  $U = A + \sigma X$  (Jacobi's equation).

Proof. (i) is obvious from the definition and so is (iii). For the proof of (ii), which is somewhat complicated, see [5]. Note that (ii) implies that  $N(\sigma) = 1$ . For (iv) one calculates as follows

$$\begin{split} [N,\sigma X] &= (N\sigma)X + \sigma \sum_{i=q+1}^{n} X(\frac{x_{i}}{\sigma}) \frac{\partial}{\partial x_{i}} = X + \sigma \sum_{i=q+1}^{n} \left\{ -\frac{1}{\sigma} X(x_{i}) + \frac{x_{i}}{\sigma^{2}} X(\sigma) \right\} \frac{\partial}{\partial x_{i}} \\ &= X - \sum X(x_{i}) \frac{\partial}{\partial x_{i}} + X(\sigma) \sum \frac{x_{i}}{\sigma} \frac{\partial}{\partial x_{i}} = X(\sigma) N \; . \end{split}$$

Finally for (v) the computations are

$$\nabla_{N}\nabla_{N}(\sigma X) = \nabla_{N}[N, \sigma X] + \nabla_{N}\nabla_{\sigma X}N = \nabla_{N}((X\sigma)N) - R_{N\sigma X}^{M}N + \nabla_{[N,\sigma X]}N$$
$$= (NX\sigma)N - R_{N\sigma X}^{M}N = -R_{N\sigma X}^{M}N$$

 $\nabla_{N}\nabla_{N}A = \nabla_{N}\nabla_{A}N = -R_{NA}^{M}N$ .

and

## 3 - The Riccati equation for the second fundamental forms

Let S be the (1,1) tensor field defined on a neighborhood of P in M by  $SU = -\nabla_{\pi}N$ .

Then geometrically the restriction of S to a tubular hypersurface  $P_t$  at a distance t from P is just the second fundamental form of P. Also let  $R_N$  be the (1,1) tensor field given by  $R_N U = R_{NU}^M N$ .

Lemma 3.1. 
$$\nabla_N(S) = S^2 + R_N$$
.

Proof. Let  $m \in M$  be near but not on P. Then the tangent space  $M_m$  is spanned by vectors of the form  $(A + \sigma X)_m$  where A is a tangential Fermi field and X is a normal Fermi field. Thus it suffices to prove

$$\nabla_{N}(S) U = (S^{2} + R_{N}) U,$$

where  $U = A + \sigma X$ . In fact

$$\begin{split} \nabla_{N}(S) \, U &= \nabla_{N}(S \, U) - S \nabla_{N} \, U = - \, \nabla_{N} \, \nabla_{N} \, U - S[N, \, U] + S^{2} \, U \\ &= - \, [\nabla_{N}, \nabla_{n}] \, N + \nabla_{[N,n]} \, N + S^{2} \, U = - \, R_{N} \, U + S^{2} \, U \, . \end{split}$$

Denote by S(t) the second fundamental form of the tubular hypersurface  $P_t$ . Also let R(t) denote the restriction of  $R_N$  to  $P_t$ . Then Lemma 3.1 can be reinterpreted as

Corollary 3.2.  $S'(t) = S(t)^2 + R(t)$ .

Next let  $\omega$  be a volume form on M defined near P with  $\|\omega\| = 1$ , and let and let  $(x_1, ..., x_n)$  be a system of Fermi coordinates such that  $\omega(\partial/\partial x_1 \wedge ... \wedge \partial/\partial x_n) > 0$ . For  $u \in P_x^{\perp}$  with  $\|u\| = 1$  put

$$\theta_u(t) = \omega \left( \frac{\partial}{\partial x_1} \wedge ... \wedge \frac{\partial}{\partial x_n} \right) \left( \gamma(t) \right),$$

where  $t \to \gamma(t)$  is the unit speed geodesic in M with  $\gamma(0) = p$  and  $\gamma'(0) = u$ .

Lemma 3.3. 
$$(d/dt) \ln \theta_u(t) = -((n-q-1)/t + \operatorname{tr} S(t)).$$

Proof. It is clear that  $\theta_u$  does not depend on the choice of (oriented) Fermi coordinates at  $p = \gamma(0)$ . Thus the system may be chosen so that

$$\frac{\partial}{\partial x_{q+1}}\Big|_{p} = \gamma'(0)$$
.

Then  $\{\partial/\partial x_1|_p, \ldots, \partial/\partial x_n|_p\}$  forms an orthonormal basis for  $M_p$ . Write

$$A_a = \frac{\partial}{\partial x_a} \Big|_{\mathcal{V}}, \quad N = \frac{\partial}{\partial x_{q+1}} \Big|_{\mathcal{V}}, \quad X_i = \frac{\partial}{\partial x_i} \Big|_{\mathcal{V}},$$

for a = 1, ..., q and i = q + 2, ..., n. Then

$$\theta_u(t) = \omega(A_1 \wedge ... \wedge A_q \wedge N \wedge X_{q+2} \wedge ... \wedge X_n)(t)$$
,

$$\theta'_{u}(t) = N\omega(A_{1}\wedge...\wedge A_{q}\wedge N\wedge X_{q+1}\wedge...\wedge X_{n})(t)$$

$$= \{\sum_{a=1}^{q} \omega(A_{1}\wedge...\wedge \nabla_{N}A_{a}\wedge...\wedge A_{q}\wedge N\wedge X_{q+2}\wedge...\wedge X_{n})$$

$$+ \sum_{i=q+2}^{n} \omega(A_{1}\wedge...\wedge A_{q}\wedge N\wedge X_{q+2}\wedge...\wedge \nabla_{N}X_{i}\wedge...\wedge X_{n})\}(t)$$

$$= \{\sum_{a=1}^{q} \omega(A_{1}\wedge...\wedge \nabla_{A_{a}}N\wedge...\wedge A_{q}\wedge N\wedge X_{q+2}\wedge...\wedge X_{n})$$

$$+ \sum_{i=q+2}^{n} \omega(A_{1}\wedge...\wedge A_{q}\wedge N\wedge X_{q+2}\wedge...\wedge (\nabla_{X_{i}}N+[N,X_{i}])\wedge...\wedge X_{n})\}(t)$$

$$= \{\sum_{a=1}^{q} \omega(A_{1}\wedge...\wedge (-SA_{a})\wedge...\wedge A_{q}\wedge N\wedge X_{q+2}\wedge...\wedge X_{n})$$

$$+ \sum_{i=q+2}^{n} \omega(A_{1}\wedge...\wedge A_{q}\wedge N\wedge X_{q+2}\wedge...\wedge (-SX_{i}-\frac{1}{t}X_{i})\wedge...\wedge X_{n})\}(t)$$

$$= -(\frac{n-q-1}{t}+\operatorname{tr} S(t))\theta_{u}(t).$$

Hence the lemma follows.

For certain simple differentiable manifolds M (and arbitrary P in M) it is possible to solve explicitly the differential system  $S'(t) = S(t)^2 + R(t)$ . Consequently  $\theta_u(t)$  can also be found explicitly. For example when M is flat one has

Lemma 3.4. Let P be a submanifold of a flat space M. Then along the geodesic  $\gamma$  normal to P with  $\gamma(0) = p$  and  $\gamma'(0) = u$  (where  $u \in P_p^{\perp}$  and ||u|| = 1)

(3.1) 
$$S(t) = \begin{pmatrix} T_u(I - tT_u)^{-1} & 0 \\ 0 & -t^{-1}I \end{pmatrix}.$$

**Proof.** Choose an orthonormal frame field  $\{E_1(t), ..., E_n(t)\}$  along  $\gamma$  that diagonalizes S(t) at each t

$$S(t)E_{\alpha}(t) = \varkappa_{\alpha}(t)E_{\alpha}(t), \qquad \alpha \neq q+1$$

Here it may be assumed that  $\{E_1(0), ..., E_q(0)\}$  and  $\{E_{q+1}(0), ..., E_n(0)\}$  are orthonormal bases of  $P_p$  and  $P_p^{\perp}$  respectively, and that  $E_{q+1}(0) = u$ . It follows from Corollary 3.2 and the assumption that M is flat that

(3.2) 
$$\varkappa_{\alpha}'(t) = \varkappa_{\alpha}(t)^{2} \qquad \alpha = 1, ..., q, q + 2, ..., n$$

except possibly for a finite number of points where  $\varkappa_{\alpha}$  coincides with some  $\varkappa_{\beta}$ . It is clear that  $|\varkappa_{q+2}(t)|, \ldots, |\varkappa_n(t)|$  become infinite as  $t \to 0$ . Moreover, each  $t \to \varkappa_{\alpha}(t)$  is an increasing function because of (3.2). It follows that  $\varkappa_{q+2}(0) = \ldots = \varkappa_n(0) = -\infty$ . Furthermore  $\varkappa_1(0), \ldots, \varkappa_q(0)$  are finite. Thus solving (3.2) and using these initial conditions one finds that

(3.3) 
$$\begin{aligned} \varkappa_a(t) &= \varkappa_a(0) \big(1 - t \varkappa_a(0)\big)^{-1} & a = 1, \dots, q, \\ \varkappa_i(t) &= -t^{-1} & i = q + 2, \dots, n. \end{aligned}$$

At least (3.3) holds where there is no differentiability problem. Moreover the submanifold P can always be deformed slightly so that all of the  $\varkappa_a(t)$ 's are distinct. Then (3.3) holds for the deformed submanifold without exception. Since (3.3) is a relation not involving derivatives, it must also hold for the original submanifold. Finally (3.3) can obviously be rewritten as (3.1).

Lemma 3.5. Let P be a submanifold of a flat space M. Then

(3.4) 
$$\theta_u(t) = \det (I - tT_u).$$

Proof. Using lemmas (3.3) and (3.4) one finds

$$(3.5) \qquad \frac{\theta'_u(t)}{\theta_u(t)} = -\left(\frac{n-q-1}{t} + \operatorname{tr} S(t)\right) = \operatorname{tr} \left(T_u(I-tT_u)^{-1}\right) = \frac{\mathrm{d}}{\mathrm{d}t} \operatorname{tr} \ln \left(I-tT_u\right).$$

Using the relation  $e^{trA} = \det(e^A)$ , (3.5) can be written as

$$\frac{\mathrm{d}}{\mathrm{d}t} \ln \ \theta_{\mathrm{u}}(t) = \frac{\mathrm{d}}{\mathrm{d}t} \ln \det \left(I - tT_{\mathrm{u}}\right).$$

Since  $\theta_u(0) = 1$  (3.6) may be integrated to yield (3.4).

In [5] generalizations of lemmas 3.4 and 3.5 to nonflat Riemannian manifolds are given. Let M be a complete Riemannian manifold and denote by  $K^M$  the sectional curvature of M. Assume that  $K^M$  is always nonnegative or nonpositive. Then the generalization of equation (3.2) is

$$(3.7) \varkappa_{\alpha}'(t) \leqslant \varkappa_{\alpha}(t)^{2} \text{for } K^{M} \geqslant 0 , \varkappa_{\alpha}'(t) \geqslant \varkappa_{\alpha}(t)^{2} \text{for } K^{M} \leqslant 0 .$$

This is a consequence of Corollary 3.2. Although the equation  $S'(t) = S(t)^2 + R(t)$  in general cannot be explicitly solved, at least inequalities for the principal curvatures can be obtained. A generalization of (3.3) (which follows from (3.7)) is

for  $K^M \ge 0$ . When  $K^M \le 0$  the inequalities are reversed. The from (3.8) follows a generalization of Lemma 3.5.

Lemma 3.6. Let P be a submanifold of a complete Riemannian manifold M. Assume  $K^{M}$  is always nonnegative or always nonpositive. Then

$$\theta_{\boldsymbol{u}}(t)\!\leqslant\!\det\left(\boldsymbol{I}-\,t\boldsymbol{T}_{\boldsymbol{u}}\right)\quad\text{ for }K^{\!\scriptscriptstyle{M}}\!\geqslant\!0\;,\qquad\quad\theta_{\boldsymbol{u}}(t)\!\geqslant\!\det\left(\boldsymbol{I}-\,t\boldsymbol{T}_{\boldsymbol{u}}\right)\quad\text{ for }K^{\!\scriptscriptstyle{M}}\!\leqslant\!0\;.$$

## 4 - Relations between Chern forms and the change of volume factor

Let P be an almost Hermitian manifold of complex dimension q, and let R be any tensor field on P that has the same symmetries as the curvature tensor of a Kähler manifold. Let  $\{E_1, JE_1, ..., E_q, JE_q\}$  be a local frame field on P. Then the complex curvature forms of R with respect to this frame field are the 2-forms defined by

$$\mathcal{Z}_{ab}(X \wedge Y) = R_{E_a E_b XY} - \sqrt{-1} R_{E_a J E_b XY}$$

for complex vector fields X, Y on M. Then by definition the total Chern form  $\gamma(R)$  of R is

(4.1) 
$$\gamma(R) = \det \left( \delta_{ab} + \frac{\sqrt{-1}}{2\pi} \mathcal{Z}_{ab} \right)$$

(see for example [4] for this notation).

The individual Chern forms are determined by means of the decomposition

$$\gamma(R) = 1 + \gamma_1(R) + \dots + \gamma_q(R), \quad \gamma_c(R) \in \wedge^{2c}(P).$$

It is also possible to form the  $e^{th}$  power of R (see for example [2], [3]). The definition can be given inductively via the formulas  $R^0 = 1$  and

$$egin{aligned} R^c(X_1 \wedge ... \wedge X_{2c})(Y_1 \wedge ... \wedge Y_{2c}) &= \sum\limits_{i,j,k,l=1}^{2c} (-1)^{i+j+k+l} R_{\mathbf{X}_i \mathbf{X}_j Y_k Y_l} \ &R^{c-1}(X_1 \wedge ... \wedge \hat{X}_i \wedge ... \wedge \hat{X}_j \wedge ... \wedge X_{2c})(Y_1 \wedge ... \wedge \hat{Y}_k \wedge ... \wedge \hat{Y}_l \wedge ... \wedge Y_{2c}) \;. \end{aligned}$$

Then the complete contraction of  $R^c$  is

$$C^{2c}(R^c) = \sum_{a_1...a_{r-1}}^{2a} R^c(E_{a_1} \wedge ... \wedge E_{a_{2c}})(E_{a_1} \wedge ... \wedge E_{a_{2c}}) \; ,$$

where  $\{E_1, ..., E_{2q}\}$  is any local orthonormal frame on P. In [6] it is shown that it is possible to express  $C^{2c}(R^c)$  in terms of the Chern forms of R and the Kähler form F.

Lemma 4.1. Let R be a tensor field on an almost Hermitian manifold M that has all of the symmetries of the curvature tensor field of a Kähler manifold. Then

$$\frac{(q-c)!}{c!(2c)!} C^{2\mathfrak{q}}(R^{\mathfrak{o}}) = (2\pi)^{\mathfrak{o}} \langle \gamma_{\mathfrak{o}}(R) \wedge F^{q-\mathfrak{o}}, \frac{1}{q!} F^{q} \rangle .$$

Proof of formula (A). Let  $S^{2n-2q-1}(1)$  denote the unit sphere in  $P_{\mathfrak{p}}^{\perp}$ . From (3.4) it follows that

$$(4.3) \qquad \int\limits_{s^{2n-2q-1}(1)} \theta_u(t) \, \mathrm{d}u \\ = \int\limits_{s^{2n-2q-1}(1)} \det \left(I - tT_u\right) \mathrm{d}u = 2\pi \sum_{c=0}^q \frac{C^{2c}((R^p)^c) \, t^{2c}}{c!(2c)! \, 2^c \Gamma(n-q+c)} \, .$$

The details are given in [5]. In fact this is the heart of the proof of the Weyl tube formula. In [5] it is also shown that

(4.4) 
$$V_{P}^{M}(r) = \int_{0}^{r} \int_{P} \int_{S^{2n-2}q-1_{(1)}} \theta_{u}(t) du dP dt.$$

In (4.4) M is an arbitrary Riemannian manifold. Together (4.3) and (4.4) yield

$$(4.5) \qquad V_P^{\rm Cn}(r) = (\pi r^2)^{n-q} \sum_{c=0}^q \frac{r^{2c}}{c!(2c)! \ 2^c(n-q+c)!} \int\limits_P C^{2c} ((R^p)^c) \, \mathrm{d}P \ .$$

Here P is any submanifold of real dimension 2q for which  $\int_{P} C^{2o}((R^p)^o) dP$  converges for c = 0, ..., q. Formula (4.5) is just the Weyl tube formula for a submanifold of an even dimensional Euclidean space. When P is a complex submanifold of  $C^n$ , (4.2) and (4.5) combine to yield

$$\begin{split} V_P^{C^n}(r) &= \sum_{c=0}^{q} \frac{(\pi r^2)^{n-q+c}}{(q-c)!(n-q+c)!} \int_{P} \langle \gamma_c(R^p) \wedge F^{q-c}, \frac{1}{q!} F^q \rangle \, \mathrm{d}P \\ &= \sum_{c=0}^{q} \frac{(\pi r^2)^{n-q+c}}{(q-c)!(n-q+c)!} \int_{P} \gamma_c(R^p) \wedge F^{q-c} \,, \end{split}$$

because the volume element of P is  $dP = (1/q!)F^q$ .

On the other hand when the expression  $\gamma_c(R^p) \wedge (\pi r^2 + F)^n$  is integrated over P all terms not of degree 2q can be eliminated. Hence (using the binomial theorem) it follows that

(4.7) 
$$\frac{1}{n!} \int_{P} \gamma(R^{p}) \wedge (\pi r^{2} + F)^{n} = \sum_{c=0}^{q} \sum_{k=0}^{n} \frac{(\pi r^{2})^{n-k}}{k!(n-k)!} \int_{P} \gamma_{c}(R^{p}) \wedge F^{k} \\
= \sum_{c=0}^{q} \frac{(\pi r^{2})^{n-q+c}}{(q-c)!(n-q+c)!} \int_{P} \gamma_{c}(R^{p}) \wedge F^{q-c}.$$

Now formula (A) follows from (4.6) and (4.7).

Proof of Theorem 1.1. Assume  $K^{M} \ge 0$  (the proof when  $K^{M} \le 0$  is analogous). Just as (3.4) implies (4.3) it follows from Lemma 3.6 that

$$\begin{array}{l} \int\limits_{s^{2n-2q-1}(1)} \theta_n(t) \, \mathrm{d} u \leqslant \int\limits_{s^{2n-2q-1}(1)} \det \left( I - t T_u \right) \mathrm{d} u \\ \\ = 2\pi^{n-q} \sum\limits_{c=0}^q \frac{C^{2c} \left( (R^p - R^M)^c \right) t^{2c}}{c! (2c)! \ 2^c \Gamma(n-q+c)} \, . \end{array}$$

Now the rest of the proof proceeds exactly as the proof of formula (A). The only differences are that  $-R^n$  is used instead of  $R^p$  and = is replaced by  $\leq$ .

Proof of formula (C). For  $\dim P=2$  the Weyl tube formula reduces to

$$V_{P}^{R^{n}}(r) = \frac{(\pi r^{2})^{n/2-1}}{(n/2-1)!} \left\{ k_{0}(R^{P}) + \frac{k_{2}(R^{P}) r^{2}}{n} \right\}.$$

Here  $k_0(\mathbb{R}^p) = \text{vol}(P)$  and

$$k_2(R^p) = \frac{1}{2} \int\limits_P \tau(R^p) \,\mathrm{d}P = \int\limits_P K^p \,\mathrm{d}P = 2\pi \chi(P) = 2\pi \int\limits_P \chi$$

by the Gauss Bonnet theorem. Hence (4.9) can be rewritten as

$$V_P^{R^n}(r) = \frac{(\pi r^2)^{n/2-1}}{(n/2-1)!} \int_{P} \{\omega + \frac{2\pi \chi r^2}{n}\}$$

$$= \frac{(\pi r^2)^{n/2}}{(n/2)!} \int_{P} (1+\chi) \wedge (1+\frac{\omega}{\pi r^2})^{n/2}.$$

Proof of Theorem 1.2. The proof is similar but one use the fact that  $k_2(R^P-R^M)=k_2(R^P)-k_2(R^M)=\int\limits_{P}(2\pi\chi-K^M\omega).$ 

## 5 - Proof of formula (B)

Let P and Q be complex submanifolds of  $C^n$  and  $C^m$  with complex dimensions p and q respectively. Let  $F_1$  and  $F_2$  be the Kähler forms and  $R^p$  and  $R^Q$  the curvature tensor fields. Then the product Kähler manifold  $P \times Q$  has Kähler form  $F = F_1 + F_2$  and curvature tensor field  $R^{p \times Q} = R^p + R^Q$ . Moreover the

Whitney sum theorem implies the following relation between the various Chern forms

(5.1) 
$$\gamma(R^{P \times Q}) = \gamma(R^{P}) \wedge \gamma(R^{Q}).$$

The Whitney sum theorem is usually stated for Chern classes instead of Chern forms, so that strictly speaking (5.1) is a refinement. In any case (5.1) is easily established using (4.1) and the fact that

$$\det \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = \det A \det B.$$

Using formulas (A) and (5.1) the proof of formula (B) is as follows

$$\begin{split} &V_{P\times Q}^{C^{n+m}}\left(\sqrt{r_1^2+r_2^2}\right) = \frac{1}{(m+n)!} \int\limits_{P\times Q} \gamma(R^{P\times Q}) \wedge \left(\pi(r_1^2+r_2^2+F_1+F_2)\right)^{m+n} \\ &= \int\limits_{P\times Q} \gamma(R^P) \wedge \gamma(R^Q) \wedge \sum\limits_{b=0}^{m+n} \frac{(\pi(r_1^2+F_1))^b \wedge (\pi(r_2^2+F_2))^{m+n-b}}{b!(m+n-b)!} \\ &= \sum\limits_{b=0}^{m+n} \{\frac{1}{b!} \int\limits_{P} \gamma(R^P) \wedge \left(\pi(r_1^2+F_1)^b\right)\} \{\frac{1}{(m+n-b)!} \int\limits_{Q} \gamma(R^Q) \wedge \left(\pi(r_2^2+F_2)\right)^{m+n-b}\} \\ &= \sum\limits_{b=0}^{m+n} V_P^{C^b}(r_1) V_Q^{C^{m+n-b}}(r_2). \end{split}$$

## 6 - Deformations

Proof of Theorem 1.3. The proof is elementary and essentially the same as that of [1], p. 117. Let  $F \to F + i \operatorname{d}' \operatorname{d}'' f$  be a Kähler deformation. The metric also changes, but at any rate the total Chern form of the new metric has the form  $\gamma(R^p) + \operatorname{d}\alpha$ . But then

$$(\gamma(R^p) + \mathrm{d}\alpha) \wedge (\pi r^2 + F + i\,\mathrm{d}'\,\mathrm{d}''f) = \gamma(R^p) \wedge (\pi r^2 + F)^n + \mathrm{d}\varepsilon$$

for some (nonhomogeneous) differential form  $\varepsilon$ . Thus by Stokes' theorem

$$V_P^{C^n}(r) = \frac{1}{n!} \int\limits_P \left( \gamma(R^P) + \mathrm{d} \alpha \right) \wedge (\pi r^2 + F + i \mathrm{d}' \, \mathrm{d}'' f)^n \,.$$

Proof of Theorem 1.4. If P and Q are homeomorphic then  $\chi(P) = \chi(Q)$ . If in addition vol (P) = vol (Q) then formula (C) implies  $V_P^{R^n}(r) \equiv V_Q^{C^n}(r)$ .

Conversely if  $V_P^{R^n}(r) \equiv V_Q^{R^n}(r)$ , then vol (P) = vol (Q) and  $\chi(P) = \chi(Q)$ . Because P and Q are both orientable it follows that P and Q are homeomorphic.

#### References

- [1] M. Berger, P. Gauduchon and E. Mazet, Le spectre d'une varièté riemannienne, Lecture Notes in Math., 194, Springer, Berlin 1971.
- [2] A. Gray, A generalization of the theorem of F. Schur, J. Math. Soc. Japan 21. (1969), 454-457.
- [3] A. Gray, Some relations between curvature and characteristic classes, Math. Ann. 184 (1970), 257-267.
- [4] A. GRAY, Chern numbers and curvature, Amer. J. Math. 100 (1978), 463-476
- [5] A. Gray, Comparison theorems for the volumes of tubes as generalizations of the Weyl tube formula, Topology 21 (1982), 201-228.
- [6] A. Gray, Volumes of tubes about Kähler submanifolds expressed in terms of Chern classes, J. Math. Soc. Japan 36 (1984), 23-35
- [7] P. A. Griffiths, Complex differential and integral geometry and curvature integrals associated to singularities of complex analytic varietes, Duke Math. J. 45 (1978), 427-512.
- [8] H. Weyl, On the volumes of tubes, Amer. J. Math. 61 (1939), 461-472.

\* \* \*

