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EDOARDO VESENTINTI (¥*)

Fixed points of holomorphic maps

The purpose of this report is to briefly deseribe some recent advances in
the study of the set of fixed points of holomorphic maps of bounded domains.

1 - Notations and preliminary results

Throughout this paper D will be a bounded domain in a complex Banach
space E, whose open unit ball will be denoted by B; ¢p and yp will be the Ca-
rathéodory distance and the Carathéodory differential metric on D (ef. e.g. [3]).
If D is the open unit disc 4 in the complex plane C, y, is the Poincaré diffe-

rential metric

1
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and ¢,~which will be denoted also by w— is the integrated form of the
Poincaré metric

il £ = (61, ) = Flog TP BIEZ BBl

The close relationship between ¢, and y, when D = A, becomes looser in
higher dimension. In fact y, is the dervivative of ¢ (*); on the other hand ¢y
is not the integrated form of y, (cf. e.g. [3], p. 137).

(*) Indirizzo: Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa, Italia.

(*) Cf. {15] for definitions and bibliographical references. Contrary to what was
stated at p. 218 of [16], the Kobayashi infinitesimal metric is not the derivative of the
Kobayashi distance. A counterexample is provided by the domain of C* constructed
by W. Kaup at p. 20 of [8], as pointed out to the author by J. P. Vigus.
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For a domain D, in a complex Banach space E;, Hol (D, D,) will denote
the set of all holomorphic (i.e. Gateaux analytic and locally bounded) maps
of D into D,. In particular, Hol (D, D) will indicate the semi-group of all
holomorphic maps of Dinto D; Aut (D) will stand for the subgroup of Hol (D, D)
consisting of all holomorphic automorphisms of D (i.e. bijective biholomorphic
maps of D onto D).

A set K c D is said to be completely interior to D — insymbols X cc D— if
the norm distance d(K, END) between K and END,

A(K, END) = inf {|o —y|: 2 K,y ¢ D} ,
is positive.

The topology of local uniform convergence on D is the topology of uniform
convergence on finite unions of closed balls, completely interior to .D. The
latter topology is equivalent to the compact open topology if, and only if,
dimg E << co. The domain D being bounded, the topology of local uniform con-
vergence on D can be described, according to a theorem due to J. P. Vigué,
in the following way (cf. e.g. [3], Proposition 1V, 3.7, p. 104). Let C be a closed
ball completely interior to D. For any f, € Hol (D, D), a fundamental system
of neighborhoods of f, consists of the sets

{f € Hol (D, D): sup {|f() — fol@)|: » € B} < ¢}

when &> 0 varies.

2 - Fixed points of holomorphic maps

For any fe€ Hol (D, D), Fix f will denote the set of all fixed points of f.

If f(d) cc D, there is a constant k, with 0<%k <1, such that
eo(f(®), f(y)) <kep(w,y) for all @,y in D. That implies the Earle-Hamilton
fixed point theorem ([1], [3], Theorem V.5.2, p. 138)

If
(1) f(D)cc D,

f has a unique fiwed point.

The following theorem weakens slightly the hypothesis of, and adds some
information to the Earle-Hamilton theorem
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Theorem I. Let feHol(D, D). If the closure of the set of ilerates
{1y 13 13, ...} for the topology of local uniform convergence on D contains & map
g € Hol (D, D) such that g(D) cc D, then f has @ unique fixed point, ., and the
sequence {f*},., , . converges to the constant map & i %o for the topology of local
uniform convergence on D.

Weaker conditions than (1) for the existence of fixed points have been
establishied for the open unit ball B of a complex Hilbert space H. In this
case ¢, can be explicitly computed (cf. e.g. [3], p. 156) and turns out to be an
inner distance. Given any two points & and y in B there is a unique geodesic
(ef. [12], p. 141 for the definition) 2:[0,1] — B for ¢,, such that A(0) = x,
(1) = 4. The ball B being homogeneous, the curve A—which will be called
the ¢,-segment joining @ and y (y 7 2)—can be obtained in the following way.
Let g€ Aut B be such that g(z) = 0. Then

At) = g3 (tg(y) tef0,1].

Necessary and sufficient conditions for the existence of fixed points in the
Hilbert ball B c H have been established. Besides the results reviewed in [4],
some more recent advances will now be indicated.

A subset S c B is said to be ¢, star-shaped at x€ 8§ if the ¢,-segment Ay
joining # and any s €S, is such that A([0, 1]) c §.

Proposition 2.1 [10]. The map fe Hol (B, B) has a fixed point if, and
only f, there exists a non-empty ¢, star-shaped subset 8§ c B such that f(S)c S
and f(S) c B.

The fact that Fix f is the intersection of B with a closed affine subspace
of f weakens condition (1).

Corollary 2.2 (10]. If f(B)c B then Fix{ consists of one point.

Theorem II[1L]. The set Fix f is non empty if, and only if, there exists
a non-empty convex subset X c B such that f(X)c X and }{X)c B.

The following result by K. Goebel [5] concerns the case where Pixf=9
for f e Hol (B, B).

Proposition 2.3. If Fixf =0, there emists a poinl ue oB such that
for all real k, with 0 <k < 1, the ellipsoid
|1—(z, u)|® [

By(u) = {xe B: T [l <1——k}

is invariant: (f(Bp(w)) C Ey(u).

Consider now the bi-disc BxB of HxH.
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Theorém IIT [11]. Let feHol (BXB, BXB). Then Fix f5=0 if, and
if, there ewists « non-empty convex subset X ¢ BX B such that {(X)c X and the
weak closure of f(X) is contained in B X B.

If the weak closure of (B xB) is contained in BxB, then Fix f consists
of one point.

If fe Aut (B), complete results are available (cf.[3] and the relevant
bibliography therein). For a discussion of the existence of fixed points of holo-
morphic automorphisms of the unit ball of a Banach M-lattice, cf. [13].

3 =~ The structure of the set of fixed points

Complex geodesies for the Carathéodory distance ¢, are a useful toolin the
investigation of the geometric structure of the connected components of Fix f.

A holomorphic map ¢: 4 — D is called a complex geodesic for ¢p at (L)
(for some &, € 4), if

(2) eo(@(%o), P(8)) = (Lo, &)

for all £ € 4. Such a map is injective and its range p(A) is closed in D. It can
be shown [15] that if (2) holds for some { € AN {(,}, then it holds for all { € 4,
and therefore ¢ is a complex geodesic at ¢(f,) for ¢;. As a consequence, if ¢
is a complex geodesic for ¢, at @({,) for some {, € 4, then ¢ is a complex geo-
desic for ¢p at @(£) for all £ e 4.

Examples.
1. If D is a bounded, non simply-connected domain in C, there are no
complex geodesics for ¢p.

2. Tf D is the open unit ball B c E, for any @ € B\ {0} there is a complex
geodesic ¢ for ¢, whose range p(4) contains 0 and 2. Such a geodesic is given
by @(¢) = (¢/|#])x, and is the unique complex geodesic for ¢, whose range
contains both 0 and z if, and only if, (1/]2|)# is a complex extreme point
of B[15],[16].

Let feHol (D, D) be such that Fixfs£0. If Fixf contains two distines
points, x, and »,, and if there is a complex geodesic ¢ for ¢, such that {w,, 2,}
C p(4), then, being ¢y(@y, ;) = ¢o(f(20), f(21)), the holomorphic map fop: 4 — D
is a complex geodesic for ¢, whose range contains x, and x,. Hence, if there
exists a unique complex geodesic for ¢, whose range contains both 2, and 2,
there exists a Moebius transformation o of 4 such that fop = oo [15]. The
fact that {w,, v} C Fix f coupled with the injectivity of ¢ implies then that o
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has two distinct fixed points in A, and therefore is the identity, showing that
@(4) c Fix f. That proves [16].

Theorem IV. If Fixf contains at least two points and for some
w, € Fix f and any @ € Fix f there ewists a unique complew geodesic for ¢p whose
range contains w, and x, then Fixf is connected and FixfN 0D 0.

Let B be the open unit ball in the complex Banach space E.
Let feXol (B, B) be such that 0eFixf Let F= {yeE: df(0)y =y}
and let K= {ye EN{0}: (1/|y]) is a complex extreme point of B}. Then

(3) FANKNB=TFixfn K.

If K= EN{0}, (3) reads FN B = Fix{.

If B is homogencous (i.e., if Aut (B) acts transitively on B), condition
0 c¢Fixf can be dvopped; cf. [16] for further details.

If K S E\{0} there are examples of holomorphic maps f: B—>B with
f(0) = 0, such that Fix f¢ KN F. Let B be the unit bi-disc of C?

B=AxA4= {(#,z)eC: |5] <1, |a| <1}.

Proposition 3.1 [16]. For any fe Hol (4 x4, 4 xA) with Fix f# 0 one
of the following cases mecessarily occurs:

Pix f consists of one point
Fix f is the range of & complex geodesic for c,
f is the identity map .

Since K = {(21,%): |21 = |2:] #£0}, if f(0,0) = (0, 0) and (2}, 23) € Fix ,
with |#9] =% |#%|, then either f is the identity map or Fix f is the range of a
complex geodesic for ¢, , and is not contained in K (cf. [6] for related results).

In[17] J. P. Vigué generalizes Proposition 3.1 proving

Theorem V. Let D be a bounded convex tawt domain in C». Let
feHol (D, D) have two distinct fiwed poinis @,y in D. If there is a complexw
geodesic for ¢ whose range contains both x and y, then there exvists a complex
geodesic @ for ¢p such that

(4) {#, 9} C p(4) c Fixf.

Recall ([9], p. 129) that a domain D of C* (or a connected complex mani-
fold) is taut if, for every sequence {p,} in Hol (4, D), one of the two following
cases necessarily oceurs:
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(1) {p+} contains a subsequence uniformly convergent in Hol (4, D) on
all compact subsets of A4;

(ii) For all compact subsets K c 4, L c D there exists an index », such
that @u(K) N L =0 for all » > »,.

The hypotheses of theorem V are fulfilled if D is the open unit ball B of
a finite dimensional normed complex vector space E, and » = 0, y € B\{0}.
If, more in particular, B is homogeneous, the above conditions are satisfied
for any choice of »,y (z=y) in B.

The following questions arise naturally at this point.
Let fe Hol (D, D).

(@) Assume that f contains two distinet points  and y.
Does the existence of a complex geodesic for ¢p, whose range contains & and y,
imply that there is a complex geodesic ¢ for ¢y satisfying (4)%

(b) Assume that every two points of D lie in the range of a complex
geodesic for ¢p.

Is Fix f connected?
If Fix f contains more than one point, is Fix f N 0D 5= 0%

The results reviewed so far give partial answers to these questions. Let B
be the open unit ball of a complex Hilbert space H and let f e Hol (B X B, B X B)
be such that Fixfs=0. T. Kukzumow and A. Stachura [11] have shown that
either Fix f consists of one point or Fix f N 0(B X B) 7 0.
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