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CARLO MARCHINI (¥)

Unities, semantics and realizations (**)

A Luigt Capriorx per il suo 70° compleanno

Let P = (P, <) be a poset with greatest and least elements, denoted by
1 and 0, respectively. Let A be a non-empty set, then

Def. 1. An ordered triple M = (P, ==,=) is a pre-model for A, if =
and =4 are contained in P x.4 and for every p, g € P, for every a € 4, the fol-
lowing hold: (1) 0k=ua; (2) 1=4a; (3) if p<q and ¢ =a, then p =a; (4) if
p<q and p = a, then ¢= a; (5) if p =« and ¢= a, then p<q.

Remark 1. Conditions (1)-(3) are similar to usual conditions on an or-
dering relation. Conditions (3)-(5) yield, for every p in P and for every a,
bin A:

(6) if p =l @ and p =10, then (VgeP) (=06 =>qk=0); (7) if p=la and
P E=<b, then (VgeP) (g=1b =¢= a).

Conditions (1)-(3) agree with definition of y-pre-model for a set 4, as given

in [2].

An interesting comparison can be made with notion of unity, given in [1].

Proposition 1. Let I be a unity of seis P and A, then there is a posel P’
and relations =, = <P’ XA, such that (3)-(5) hold.

Proof. As a consequence of Theorem 2 of [1], thereis a preorder relation
on P, given by I / (P X P),restriction of I to P X P, and arelation I 1 (P X 4),
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such that the given unity I isrepresentable as a unity of therelation I (P x 4).
Let P'= (P|~, <) be the poset obtained as quotient P/~, where =~ is the
equivalence relation generated by I / (PXP). Denote by =< P xA and
=%, respectively, the relations induced by I A (PXA) and I 1 (AXP).
A straightforward calculation thows that (3)-(5) hold.

Remark 2. Let P= (P, <) be a poset and let 4 be a non-empty set.
Given a unity I of sets P and 4, it can happen that (pre)-order relation
I / (PXP) be different from <. To avoid these difficulties it seems more
suitable the following

Def. 2. (a) Let P= (P, <) be a poset (or a preordered set) and let =
be a subset of P x4, where 4 is a non-empty set. A bounded unity of relations
< and = is the largest preorder I on P@ A (formally-disjoint union) whose
restrictions to PXP and Px A are equal to < and k=, respectively. (b) A
bounded unity on P and A is any preorder I on P@ .4 such that I/ (PXP)= <
and (8) (Vze P® 4) (Yyed) (yIv <> (Yz€P) (2Iy = 2lx)).

With these definitions, the following hold

Proposition 2. Given a poset (or a preovdered set) P = (P, <) and a
relation =C P X A, there is a largest preorder I on P@ A suchthatI A (PXP)=<
and I / (PXA)=k=if and only if < and = satisfy condition (3). In this
case for every p € P and for every a,b in A: (9) alp if and only if (Vg P)
(¢ F=a =q<p); (10) aIb if and only if (Vg€ P)(qt=a =q=D).

Proof. Tf is easy to show that if exists a preorder 7 on P@ 4 whose
restrictions to suitable sets are given by < and k=, respectively, condition (3)
stating an instance of transitivity, must hold. Conversely if condition (3) holds,
(9) and (10) complete the definition of a preorder on P@ A: reflexivity is
obvious; repeated applications of (3), (9) and (10) allow us to conclude that
I is transitive. Let J be a preorder on P@.4 such that J / (PXP) = <
and J  (PXA) = =. Suppose J¢I, then there are peP, a,be A such
that either aJp and not alg or aJb and not alb. In first case, by (9), there
is ¢ € P with ¢ =a and ¢ £p. Hence ¢Ja and aJp, but not ¢Jp. In second
case, by (10), there is ¢ € P such that ¢=a and ¢ | b; hence ¢Ja, aJb and
not gJb.

Def. 2 (b) is related with the following

Proposition 3. Let P= (P, <) be a poset (or a preordered set) and let
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A be a non-empty set. Any bounded unity on P and A is representable as a
bounded unity of a pair of relations.

Proof. Let I be a bounded unity on P and A, denote I / (PXP) by
< and I / (PxA) by =. These relations are restriction to suitable sets of
a transitive relation on P@ 4, then (3) holds. By Proposition 2 there is a
largest preorder J on P@ A whose restrictions are < and k=, respectively.
It follows that I CJ. Let ae A and p € P be such that aJp; by (9), (Vg€ P)
(¢ =a = q<p). This condition can be written as follows: (Vg € P)(¢la = ¢Ip).
By (8) alp. In a similar way, if @, b€ A are such that aJb, then by (8), alb.
Hence I =J.

Remark 3. Let M = (P, =,=) be a pre-model for 4 there is a bounded
unity on P and A4, naturally associated with the given pre-model. Condition (9)
implies (5); it follows also that for every p € P, a€ 4, if p=a, then alp.
Conversely, given a bounded unity I on P and A, relations I / (PxA) and
(I / (A XP))r, trivially satisfy conditions (3)-(5), while condition (1) (and (2))
holds if and only if P has least (greatest) element and for every a € A there
is p € P such that pla (aIp). In this case (P,I / (PxA4), (I / (AXP))?)
is a pre-model for 4.

We define now some notions related to pre-models.

Notation 1. (a) Let @ be a subset of P, denote by AQ (VQ) the set
of lower (upper) bounds of @ in P. (b) Let M = (P, =,=d) be a pre-model
for A. For any a€d set M,={peP|pk=a} and W,={p€P|p=a}.

Remark 4. Given a pre-model M for 4, for every a € 4, condition (5)
implies that M,C A4 W, and W,C VM,. Moreover M, N W, is empty or is a
singleton: if p,q e M, N W,, then p<q and g<p, by (5). In this case it is
easy to prove that p = max M, = min W,. By condition (3) M, is a down-
ward closed subset of P and for (4) W, is an upward closed subset of P.

Notation 2. Let M = (P, =,=) be a pre-model for A4, set:
(a) N(M) = {e e A|M,=P}, ZM)= {acAd]| W,= P},
T(M) = N(M) U Z(M);
(b) R(M) = {a € A|M,N W, 0}, the set of formulae realizable in M;
(¢) M(Ayr= {acA|AM,= W}, M(A4)-= {a € A|V W, = M,}.

In the sequel Notation 2 (¢) would be simplified as M+ and M-,
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Remark 5. Obviously 1=« if and only if ¢ e N(M) and 0 =4 « if and
only if a e Z(M).
Compare Notation 2 (a) and 2 (b) with Notations 3 and 4 of [2], respec-
tively. Easily can be proved that a is realizable in M if and only if there is
a unique p € P such that for every qeP

(11). . g¢E=aif and only if ¢<p and g¢= ¢ if and only if p<q.

The set T'(M) is contained in (M), since P has least and greatest elements.
Moreover by (11) it follows that R(M) is contained in M+ M-.

Def. 3. Tet L be the propositional language (with truth symbol 1) and
let F(4) be the set of formulae obtained taking 4 as set of propositional let-
ters. An ordered triple M = (P, k=,=) is a model for F(4) if
(12) - M is a pre—inodel for F(4),

(13) (P, =) is a vop-model for F(4) (cf. [2]);
or every o,f € F(A) and for every pe.P:

(14) P = (—«) if and only if (VgeP) (¢ = (—a) =>q¢<p),

(15) P = (e—f) if and only if (Vg€ P) (¢ = (2 —B) =>q<p),

(16) =4 («A\p)-it and only it (VgeP) (¢ = (aAB) =g¢<?p),
(17) -~ p=q (@Vp) if and only if (p=f« and p=i f),
(18) P =(«Vp) it and only if (YgeP) (¢= (@VB) =p<q) .

Remark 6. Using previously introduced notations, Def. 3 can be res-
tated as follows. M is a model for F(4) if the following hold: (12), (13) and

(14) Wen= VM(—OM (18)’ W((x—bﬂ) = VM(&-»,&)Q (16)’ W(o:/\ﬁ) = Vﬂ[(«xl\ﬂ);
A7 Weyp= Wa Ws; (18)" My =4 Wiyp-

As a consequehce, it follows that (— o), (e — ﬁ)b and (azAf) belong to M,
(@VB) belongs to M-. :
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Remark 7. Definitions of morphisms of models and strong morphisms
of models are similar to same definitions in [2], with the obvicus clauses oun
relation =. TLet f: M — M’ be a morphism of models, then f(0) =0 and
f(1) = 1, by Remarks 5 and 4. It follows that N(M) < N(M') and Z(M) C Z(M').
If f is strong, then N(M)= N(M') and Z(M) = Z(M'}.

For every «, f € F(A), MxC Mpif and only if (« — ) € N(M), then M, C M.
An analogous condition does not hold for set Wx, Wj, even if f is a strong
morphism of models; nevertheless if W, C W/';, then W.C Wpy. To eorrect
this state of affairs, we give the following

Def. 4. Let f: M — M’ be a morphism of models; f is rigid if f is strong
and for every p' € P’ and every formula «, p' | o implies that there is p e P
such that p'<'f(p) and p #| «.

Proposition 4. Let f: M — M’ be a rigid morphism of models, then for
every o, f € F(A), WaC W;s if ond only if W,C W,.

Proof. Suppose W_.¢ W;;’ the there is p’e W, and p’gf-W;;. By hy-
pothesis there is p € P such that p'<’' f(p) and p¢ Ws. By (4), f(p)e W;
and also pe W,. Hence p € W, contradiction.

Theorem 5. Léet M = (P, =,=) be a pre-model for A, then there is a
« unique » extension of M to a model for F(A), with the same poset P.

Proof. Is obtained by induction.
For a model M, the set T(M) has «nice » properties, stated in the following

Proposition 6. Let M = (P, =, =) be a model for F(4), then for every

formule o and B, the following hold:

(a) if Wa= P, then M= {0} and if Mo = P, then Wa = {1};

(b) if ce Mt, then My = {0} if and only if Wo = P and if o € M, then
Wa= {1} if and only if Ms= P;

(¢) (aAP)eN(M) if and only if o, e N(M);

(Q) if o, BT (M), then (x\f)eT(M);

(e) if aeT (M), then (—a)eT(M);

(&) if o, peT(M), then («—p)eT(M);
(&) if o, e T(M), then («Vp) e T(M);
(h) F(9)cI(M).
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Proof. (a) Trivial by Remark 4 and conditions (1) and (2). (b) Trivial,
from (a) and Notation 2 (¢). (¢) Trivial by Notation 2 (a); (13) (and (4') of [2]).
(d) Let either o or f§ be element of Z(M), then by (a) above, M, ,, = {0}.
By Remark 6, («Af)e M*, then by (b), (eAp)eZ(M). (e) If «e N(M),
Mo = {0}, then, using Remark 6 and (b), (—«)eZ(M). If « is an
element of Z(M), by (a), Ma= {0}, hence, by (2') of [2], M =P, i.e.
(—a)e N(M). () Since (« — ) e M+ (Remark 6), by (b), proof is the same
as proof of Proposition 4 (d) of [2]. (g) If either « or § (or both), belongs to
N(M), then («Vp) € N(M): by (a) Wa = {1} or Wp = {1}; by (17)' W 5= {1}.
Since, by Remark 6, («\/f)e M-, from (b) it follows that («Vp) € N(M). In
case o, f € Z(M), by (17)'y W5 = P, i.e. («Vf) € Z(M). (h) From (13) (and
(1') or [2]), it follows that 1€ N(M); (¢)-(g) give the result for all formulae
of F(#), built up out with truth symbol and connectives.

Notation 3. Given a formula «, denote by Sub (x) the set of all sub-
formulae of «. ’

Def. 5. (a) Let M be a model for F(4), a formula « is hereditarily rea-
lizable in M if Sub («) C R(M). Denote by H(M) the set of hereditarily rea-
lizable formulae.

(b) A subset ' of F(4) is a fragment if for every « eI, Sub () C F.

Theorem 7. There exists a poset P, with least and greatest element, such
that for every non-empty fragment F there are two relations =, = C P X F(4)
such that M = (P, =, =J) is a model for F(A) in which HM) = F(F N 4)< T(M).

Proof. Proofis similar to proof of Theorem 5 of [2]. Take P as the set
{0, 1}?, with lexicographical order induced by natural order on {0, 1}. Trivially
(0, 0) is the least element and (1, 1) is the greatest element of P. Given a
fragment ¥, define =y as made in Theorem 5 of [2]. By Proposition 2, there
is a bounded unity of relations < and = on poset P and set 4. By second
part of Remark 3, in this way we get a pre-model My for A. Bxtend M; to
a model M, for F(4), as stated in Theorem 5. Prove, by induction, that the
set F(F N A) is contained in T'(M): 1€ T(M) and x€ A is in T(M) if and
only if «e # N A. The remainder is a consequence of Proposition 6. Using
induetion, it can be proved that H(M) = F(F N 4): first step is trivial, i.e.
H(M)N A =TF N A, by definition of the model M. Suppose «, e F(I'N A)
and o, fe H(M), then M o Wes = {0} otherwise MmN W= {1}
hence, in both cases, (—«) e R(M). In a similar way can be proved that
Mopn N Wiep# 0 for ®e{V, A, —}. Then «a®feR(M). In conclusion
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FFnA)cHM). Conversely, if «e H(M), then propositional letters in
Sub () must be elements of HM)N A = R(M,) =F N A, or we F®); it
follows that e e F(F N A). Hence F(I'n 4) = H(M).

Given a model for F(4), M = (P, k=, =4), and a fragment F such that
H(M)C FCM*n M-, we construct a new model M[F] in which M can be
rigidly embedded. To prove this, first consider the bounded unity of relations
< and =/ (PXUI'), and denote this by I,. The relation I, is a preorder
on POF. Note that condition on the fragment JF allows a simplification
of (9): for pe P and pel, plpp if and only if p = ¢.

Lemma 8. Define =(F), = (F)C (P F)xXF(4), extending = and =
of M, sctting for every @eF and every ae F(4), ¢ =(F)a if and only if
MpC My and o= (F)a if and only if WpC Wa, then Ip and = (F), = (F)
satisfy conditions (3)-(5).

Proof. Is a straightforward calculation.

Denote by =~ the equivalence relation generated by I on P@.F, and
set P[F'] = P@ F[~. The unity I, gives rise to an order <[F] on P[F];
then set P[F] = (P[F], <[F]).

Lemma 9. Let p, g be clements of P and ¢, € F, then the following hold:
(a) p =~ q if and only if p = q;
(b) p =~ ¢ if and only if Mo We= {p};
(¢) @ =~ if and only if (p«> ) e N(M).

Proof. (a) Trivial. (b) If p =~ ¢, then plyp, i.e. p=¢ and @lgp, ie.
p=d@. By Remark 4, M,N Wo= {p}. (¢) By (10) @I,y if and only if
(p — v) e N(M) and then by Proposition 6 (c), ¢ =~ ¢ if and only if (p<+> 9)
€ N(M).

Lemma 10. Let x,y be elements of P® F, such that x ~ y, then for every
a € F(4), © = (F)o if and only if y = (Lo and = (F)e if and only if y == (F)e.

Proof. Is trivial in case z,y€ P, by Lemma 9 (a). If e P and yel,
then M, N W,= {z}. If 2= (Fa, then z =0 and z={y. Hence, every
p € M, is such that p <, by (5), and by (3), p € My; therefore M, C M,. Con-
versely, if y = {(Fa, p =0, being p € M,. Proof for = (F) is similar. In case
2,y € F, by Lemma 9 (¢), M, = M, and also W, = VM, = VM, = W,, since
Fc M+, Result follows trivially.
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Denote elements of P[F], using square bracket notation: if zeP® T,
[#] € P[F].

Lemma 11. ZLet o be o formula and € PP F, define [@] = [Fla if and
only if @ = (I')ec and [#]=4 [Fla if and only if v = (F)ee. Then M[F] = (P[F],
=[F], = [I']) is a model for F(A).

Proof. Trivially relations =[] and = [F] are contained in P[F]x F(4).
Lemma 10 says that these relations are correctly defined. Observe that [0]
and [1] are the least and the greatest elements of P[F], respectively; then
conditions (1) and (2) are trivial. Lemma 8 states that also conditions (3)-(5)
hold. In conclusion (12) is proved. Moreover (13) can be proved as in The-
orem 6 of [2]. '

Take now 2 € P@ I and a formula o, if [2] =] [F}(— ), then & = (F)(— «);
if #e P, for every p € P such that p = (—a), by (5), [p]<[F][»]; for every
p el such that ¢ = (F)(—a), MeC Mrn. It follows Wesm = V.M s C VM,
= Wo, then @eWy, ie. [p]l<[Flz]. In case zel, o= (F)[(—«) means
WoC Wew; then if pe M w, pe M, ie. [pl<[Flz], since MuyC A Wea
CAW, = M,. If ¢ € I is such that [¢] = [F](— o), My C Mo and M a, C M,
as before; then M,C M,, that is [p]<[Fl[z]. Conversely, if [#] 54| [F](— «),
in case that v € P, x #| (— ) and then there is ¢ € P, ¢ = (—«) and q €a;
this can be restated saying that there is [y] in P[F] such that [y] = [Fl(— )
and [y] €K[F][#]. In casethatz e F, W,¢ W amand thereisqe W, and ¢ ¢ Wi-u;
therefore there is p e My such that p<q. But [p]e=[F](—a) and if
(Yye P@ F)([y] k= [F)(— o) =[y] <[F][]), then [p]<[FI[v]. By (5) we getp <,
contradiction. In conelusion, condition (14) is proved. In a similar way con-
ditions (15) and (16) can be proved. To show (17), let # be an element of
PO F, and [z]= [F](eVf); when @ € P, [#]=] [F}(«\/B) is equivalent to . =] «
and z= f, i.e. [#]=d [Fla and [z]=] [F]f. In case z e, by (17), the fol-
lowing are equivalent: W,C W, and W,C W., W,C Ws. To prove (18),
take 2 € P@ F' such that [#] = [Fl(«Vp), then = = (F)(«VpB); if e P, then
2 = (V) and for every ¢ e Wiavps ©<¢, therefore [z]<[F]q]. If peF and
¢ =1 (F)(«Vp), then WoC W s, hence M p=A4 W 5S4 Wp= My; it
follows that =€ My, i.e. [2]<[Flp]. In case w&F, hypothesis means that
Mo C Mypy5 1 €W oypys 4 €W,y since Wiy € VM 5 € VM= W,, then [2]
<[Flq]; if pell is such that p=(F)(xV ), then, as before, MM 5 € Mg, ie.
[w]<[F][p]. Conversely let xe P@F be such that for all [y]=] [Fl(aVp),
[2]<[F][y] and suppose [@] |s= [F](eVf). That means # | (F)(«VfB); in case
@ € P, there is g € Wy, such that p £¢, i.e. [p] £[F][q], contrary to assump-
tion. If weF, M.¢ My, then there is p € M,, with p ¢ M yp- 1t follows
that there is ¢ € M, such that p €g. But [#]<[F][q], then ¢ € W, and by (5),
p<q, contradiction.



[9] UNITIES, SEMANTICS AND REALIZATIONS 439
Some other properties of the model M[LF] are shown in the following

Lemma 12. Let 4: P — PLI], be defined by i(p) = [p], then ¢ i8 an injec-
tion and a rigid morphism of models i: M — M[F].

Proof. First part of proof is trivial: 4 is injective and is & strong mor-
phism of models, by definition of M[F]. Let @ € P@ F be such that [z] 5| [F]e,
where o is a formula; if & € P, [¢]<[P][z] = i(z), and x4 o. In case we I,
W. ¢ Wa, then thereis p € W,and p ¢ Wy; it means that [#]<[Fli{p) and p 4 o.

Lemma 13. (a) M+ = M[F]* aond M- = M[F]-, then Mt N M-
= M[F* N M[F]~. (b) FCH(M[F]).

Proof. (a) M+C M[F]* since i is rigid: take « € M+ and suppose VIM[F],
#% W[F]x, then there is [#]e VM[F], such that [#]=] [Fle; by rigidity of 4
thereis p € P such that [#] <[Flp]and p 54| «. But[p] € VM [F]x, then p € VI,
ie. peWy. M[FT is contained in M*: if o e M[I']t, let p € P be an element
of VM, if [p] is in VM[F],, then [p]e W[F]. and so p & Ws, since 4 is a
strong morphism of models; otherwise there is ¢ € F such that [¢] =[F]«
and [p] £[F1[p], i.e. Mp< M, and p ¢ Wy. But ¢ € MT, thence there is g € My
such that ¢ €£p; by previous inclusion, g € M_ and by (5), ¢ <p, contradiction.
In a similar way can be proved that M—-C M[F]-, using a condition of «co-
rigidity » on 4 (i.e. reversing relations < and #|) and that M[FI-¢ M-. (b) It
is enough to prove that F C R(M[F]), since F is a fragment. Take ¢ € F,
trivially [¢] =[Flp and [p]=] [Flp, hence M[Fl, N\ W[F]y = 9.

This conclude the proof of the assertion stated before Lemma 8. The
model M[F] can be completely characterized by a property of «freedom .
The following theorem resumes these results

Theorem 14. Let M = (P, =,==) be a model for F(4) and let F be a
fragment such that H(M)C F C M+ N M-, then there is a model M[F], for F(4),
in which M can be rigidly embedded, by means of i: M — M[F]. Moreover
FC HM[F)) and M+NM-= M[FI* N M[F]-.

For every model M'= (P', =',={"), for F(A), such that FCH(M') and for
every rigid morphism of models f: M —> M', there is o unique rigid morphism
of models f': M[F]— M', such that f'oi = f.

" Proof. Let M' and f satisfy hypothesis, define f: P[F] - P as follows
f([p]) = f(p) and f([¢]) = max M,. Note that if p =~¢, in POF, then
P =@ and p= @, simultaneously; thence f(p) =" ¢ and f(p)=='¢@. Therefore
M, N W, 0 and f'([p]) = f(p) = f'(lg]). If ¢ =~ v, then by Lemma 9 (c),
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(p> ) € N(M) and by Remark 7, (p<> p) € N(M'); it follows that JII; = My',
and also max M, = max My',, ie. f'([e]) = f'([¥]). This shows that f' is cor-
rectly defined.

Let @,y be elements of PO F. If [«]<[F]ly], we show, by cases, that
f(lel) <’ f(ly]). When z,yeP is trivial. If 2eP and yelP, [z]<[F][y]
means « =y, then f(z) ='y. By hypothesis ¥ CH(M'), then f'([2]) = f(z)
<'max M, = f'([y]), by (11). In case v €F and y€ P, [«]<[F][y] means
y =i @, then f(y)=4' @; again by (11), f'([#]) = min W_<'f(y) = f'([y]). When
z,y € 7, [#]<[Flly] means M, C M,, then by Remark 7, M, C M, then f'([«])
= max M, <'max M, = f'([y]). We can easily reverse passages above and
conclude [2]<[Fiy] if and only if f([z])<’f'([¥]). Let # be an eclement of
POF and let o be a formula. Suppose [z] =[Fle. If x € P, this is equi-
valent to =« and also f(o) =" «, since f is strong, thence [z] = [F]a if and
only if f/([#]) ="a. In case z€F, [@] =[F]« is equivalent to M, C Ms; this
condition can be written: (#— ) € N(M). By Remark 7, N(M)=N(M’), then
[z] =[x is equivalent to M_C M.. But »€H(M') and so there is p’ such
that M. N W, = {p'} and p'= max M, p'= {'([#]). By (11) and (3), [¢] = [Fa
is equivalent to f'([#]) = a.

Suppose now [#]=] [Pla. If ze P, this is equivalent to x=4 o and also
to f(x)=d' «, since f is a strong morphism; thence [#]=d [F'lx if and only if
f'(lz]) =i’ «. In case @€, [¢]= [Fl« is equivalent to W, < Wa. But f is a
rigid morphism of models and by Proposition 4, W_.C W., then f([«])
= min W,={'«. Conversely if f'([2])=4'«, for every pe W,, f'([z])<’ (D),
by (11). It follows that f(p) € W., by (4), and p € Wa, since f is strong. In
conclusion W,C Wo“, i.e. [#]= [F]a. Therefore f' is a strong morphism of
models. Suppose p'e P', a € F(4) ave such that p' 4|’ o, then there is pe P
such that p’<’f(p) and p £ «. This can be written as: there is [#] € P[F]
such that p’ <’ f([«]) and [#] 4| [I'J«. Thence f'is a rigid morphism of models.
Trivially f'oi = f, by definition of f'. Uniqueness of f’, satisfying condition
floi = f, is trivial.
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Abstract

Recently II. Crapo (cf. [1]) introduced the concept of unity of a relation in the context
of representation theory for finite lattices, suggesting an application to Logic. Starting
from that, I give a slightly modified version of the notion of unily, in order to obtain an
interesting semantics. In this field I extend the notion of realizability, given in [2], and
prove the following result: For each model M and fragment F' of propositional logic, satis-
fying a few mild hypothesis, there is an extension M[F] in which every element of I is
realizable.
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