CARLO MARCHINI (*)

Unities, semantics and realizations (**)

A Luigi Caprioli per il suo 70° compleanno

Let $P = (P, \leq)$ be a poset with greatest and least elements, denoted by $\underline{1}$ and $\underline{0}$, respectively. Let A be a non-empty set, then

Def. 1. An ordered triple $M = (P, \models, \rightrightarrows)$ is a pre-model for A, if \models and \rightrightarrows are contained in $P \times A$ and for every $p, q \in P$, for every $a \in A$, the following hold: (1) $0 \models a$; (2) $1 \rightrightarrows a$; (3) if $p \leqslant q$ and $q \models a$, then $p \models a$; (4) if $p \leqslant q$ and $p \rightrightarrows a$, then $q \rightrightarrows a$; (5) if $p \models a$ and $q \rightrightarrows a$, then $p \leqslant q$.

Remark 1. Conditions (1)-(5) are similar to usual conditions on an ordering relation. Conditions (3)-(5) yield, for every p in P and for every a, b in A:

(6) if p = a and $p \models b$, then $(\forall q \in P)$ $(q \models a \Rightarrow q \models b)$; (7) if p = a and $p \models b$, then $(\forall q \in P)$ $(q = b \Rightarrow q = a)$.

Conditions (1)-(3) agree with definition of μ -pre-model for a set A, as given in [2].

An interesting comparison can be made with notion of unity, given in [1].

Proposition 1. Let I be a unity of sets P and A, then there is a poset P' and relations \models , $\rightleftharpoons \leqslant P' \times A$, such that (3)-(5) hold.

Proof. As a consequence of Theorem 2 of [1], there is a preorder relation on P, given by $I \nearrow (P \times P)$, restriction of I to $P \times P$, and a relation $I \nearrow (P \times A)$,

^(*) Indirizzo: Dipartimento di Matematica, Via Università 12, 43100 Parma, Italy.

^(**) Lavoro eseguito nell'ambito del G.N.S.A.G.A. (C.N.R.). — Ricevuto: 4-VII-1984.

such that the given unity I is representable as a unity of the relation $I \nearrow (P \times A)$. Let $P' = (P/\simeq, \leqslant)$ be the poset obtained as quotient P/\simeq , where \simeq is the equivalence relation generated by $I \nearrow (P \times P)$. Denote by $\models \subseteq P' \times A$ and \rightleftharpoons^{op} , respectively, the relations induced by $I \nearrow (P \times A)$ and $I \nearrow (A \times P)$. A straightforward calculation shows that (3)-(5) hold.

Remark 2. Let $P = (P, \leqslant)$ be a poset and let A be a non-empty set. Given a unity I of sets P and A, it can happen that (pre)-order relation $I \nearrow (P \times P)$ be different from \leqslant . To avoid these difficulties it seems more suitable the following

Def. 2. (a) Let $P = (P, \leqslant)$ be a poset (or a preordered set) and let \models be a subset of $P \times A$, where A is a non-empty set. A bounded unity of relations \leqslant and \models is the largest preorder I on $P \oplus A$ (formally-disjoint union) whose restrictions to $P \times P$ and $P \times A$ are equal to \leqslant and \models , respectively. (b) A bounded unity on P and A is any preorder I on $P \oplus A$ such that $I \wedge (P \times P) = \leqslant$ and (8) $(\forall x \in P \oplus A)$ $(\forall y \in A)$ $(yIx \Leftrightarrow (\forall z \in P)$ $(zIy \Rightarrow zIx)$).

With these definitions, the following hold

Proposition 2. Given a poset (or a preordered set) $P = (P, \leqslant)$ and a relation $\models \subseteq P \times A$, there is a largest preorder I on $P \oplus A$ such that $I \nearrow (P \times P) = \leqslant$ and $I \nearrow (P \times A) = \models$ if and only if \leqslant and \models satisfy condition (3). In this case for every $p \in P$ and for every a, b in A: (9) a Ip if and only if $(\forall q \in P)$ $(q \models a \Rightarrow q \leqslant p)$; (10) a Ib if and only if $(\forall q \in P)$ $(q \models a \Rightarrow q \models b)$.

Proof. It is easy to show that if exists a preorder I on $P \oplus A$ whose restrictions to suitable sets are given by \leqslant and \models , respectively, condition (3) stating an instance of transitivity, must hold. Conversely if condition (3) holds, (9) and (10) complete the definition of a preorder on $P \oplus A$: reflexivity is obvious; repeated applications of (3), (9) and (10) allow us to conclude that I is transitive. Let I be a preorder on $P \oplus A$ such that $I \nearrow (P \times P) = \leqslant$ and $I \nearrow (P \times A) = \models$. Suppose $I \not\subseteq I$, then there are $p \in P$, $a, b \in A$ such that either aJp and not aIq or aJb and not aIb. In first case, by (9), there is $q \in P$ with $q \models a$ and $q \not\leqslant p$. Hence qJa and aJp, but not qJp. In second case, by (10), there is $q \in P$ such that $q \models a$ and $q \not\models b$; hence qJa, aJb and not qJb.

Def. 2 (b) is related with the following

Proposition 3. Let $P = (P, \leq)$ be a poset (or a preordered set) and let

A be a non-empty set. Any bounded unity on P and A is representable as a bounded unity of a pair of relations.

Proof. Let I be a bounded unity on P and A, denote $I \nearrow (P \times P)$ by \leqslant and $I \nearrow (P \times A)$ by \models . These relations are restriction to suitable sets of a transitive relation on $P \oplus A$, then (3) holds. By Proposition 2 there is a largest preorder J on $P \oplus A$ whose restrictions are \leqslant and \models , respectively. It follows that $I \subseteq J$. Let $a \in A$ and $p \in P$ be such that aJp; by (9), $(\forall q \in P)$ $(q \models a \Rightarrow q \leqslant p)$. This condition can be written as follows: $(\forall q \in P)(qIa \Rightarrow qIp)$. By (8) aIp. In a similar way, if $a, b \in A$ are such that aJb, then by (8), aIb. Hence I = J.

Remark 3. Let $M = (P, \models, \rightrightarrows)$ be a pre-model for A there is a bounded unity on P and A, naturally associated with the given pre-model. Condition (9) implies (5); it follows also that for every $p \in P$, $a \in A$, if $p \rightrightarrows a$, then aIp. Conversely, given a bounded unity I on P and A, relations $I \nearrow (P \times A)$ and $(I \nearrow (A \times P))^{op}$, trivially satisfy conditions (3)-(5), while condition (1) (and (2)) holds if and only if P has least (greatest) element and for every $a \in A$ there is $p \in P$ such that pIa (aIp). In this case $(P, I \nearrow (P \times A), (I \nearrow (A \times P))^{op})$ is a pre-model for A.

We define now some notions related to pre-models.

Notation 1. (a) Let Q be a subset of P, denote by ΔQ (∇Q) the set of lower (upper) bounds of Q in P. (b) Let $M = (P, \models, \rightrightarrows)$ be a pre-model for A. For any $a \in A$ set $M_a = \{p \in P \mid p \models a\}$ and $W_a = \{p \in P \mid p \rightrightarrows a\}$.

Remark 4. Given a pre-model M for A, for every $a \in A$, condition (5) implies that $M_a \subseteq A$ W_a and $W_a \subseteq \nabla M_a$. Moreover $M_a \cap W_a$ is empty or is a singleton: if $p, q \in M_a \cap W_a$, then $p \leqslant q$ and $q \leqslant p$, by (5). In this case it is easy to prove that $p = \max M_a = \min W_a$. By condition (3) M_a is a downward closed subset of P and for (4) W_a is an upward closed subset of P.

Notation 2. Let $M = (P, \models, \dashv)$ be a pre-model for A, set:

- (a) $N(M) = \{a \in A \mid M_a = P\}, Z(M) = \{a \in A \mid W_a = P\}, T(M) = N(M) \cup Z(M);$
- (b) $R(M) = \{a \in A \mid M_a \cap W_a \neq \emptyset\}$, the set of formulae realizable in M;
- (c) $M(A)^+ = \{a \in A \mid \Delta M_a = W_a\}, M(A)^- = \{a \in A \mid \nabla W_a = M_a\}.$

In the sequel Notation 2 (c) would be simplified as M^+ and M^- .

Remark 5. Obviously $\underline{1} \models a$ if and only if $a \in N(M)$ and $\underline{0} \rightleftharpoons a$ if and only if $a \in Z(M)$.

Compare Notation 2 (a) and 2 (b) with Notations 3 and 4 of [2], respectively. Easily can be proved that a is realizable in M if and only if there is a unique $p \in P$ such that for every $q \in P$

(11) $q \models a \text{ if and only if } q \leqslant p \text{ and } q \rightleftharpoons a \text{ if and only if } p \leqslant q.$

The set T(M) is contained in R(M), since P has least and greatest elements. Moreover by (11) it follows that R(M) is contained in $M^+ \cap M^-$.

Def. 3. Let L be the propositional language (with truth symbol 1) and let F(A) be the set of formulae obtained taking A as set of propositional letters. An ordered triple $M = (P, \models, \rightleftharpoons)$ is a model for F(A) if

(12)
$$M$$
 is a pre-model for $F(A)$,

(13)
$$(P, \models) \text{ is a } \nu\eta\text{-model for } F(A) \quad (\text{cf. [2]});$$

or every $\alpha, \beta \in F(A)$ and for every $p \in P$:

(14)
$$p = (-\alpha)$$
 if and only if $(\forall q \in P) (q \models (-\alpha) \Rightarrow q \leqslant p)$,

(15)
$$p = (\alpha \to \beta)$$
 if and only if $(\forall q \in P) (q \models (\alpha \to \beta) \Rightarrow q \leqslant p)$,

(16)
$$p = (\alpha \land \beta)$$
 if and only if $(\forall q \in P) (q \models (\alpha \land \beta) \Rightarrow q \leqslant p)$,

(17)
$$p = (\alpha \lor \beta)$$
 if and only if $(p = \alpha \text{ and } p = \beta)$.

(18)
$$p \models (\alpha \lor \beta) \text{ if and only if } (\forall q \in P) (q \rightleftharpoons (\alpha \lor \beta) \Rightarrow p \leqslant q).$$

Remark 6. Using previously introduced notations, Def. 3 can be restated as follows. M is a model for F(A) if the following hold: (12), (13) and

$$(14)' \quad W_{(-\alpha)} = \nabla M_{(-\alpha)}; \quad (15)' \quad W_{(\alpha \to \beta)} = \nabla M_{(\alpha \to \beta)}; \quad (16)' \quad W_{(\alpha \land \beta)} = \nabla M_{(\alpha \land \beta)};$$

$$(17)' \quad W_{(\alpha \vee \beta)} = W_{\alpha} \cap W_{\beta}; \qquad (18)' \quad M_{(\alpha \vee \beta)} = \Delta W_{(\alpha \vee \beta)}.$$

As a consequence, it follows that $(-\alpha)$, $(\alpha \to \beta)$ and $(\alpha \land \beta)$ belong to M^+ , $(\alpha \lor \beta)$ belongs to M^- .

Remark 7. Definitions of morphisms of models and strong morphisms of models are similar to same definitions in [2], with the obvious clauses on relation =1. Let $f: M \to M'$ be a morphism of models, then $f(\underline{0}) = \underline{0}'$ and $f(\underline{1}) = \underline{1}'$, by Remarks 5 and 4. It follows that $N(M) \subseteq N(M')$ and $Z(M) \subseteq Z(M')$. If f is strong, then N(M) = N(M') and Z(M) = Z(M').

For every $\alpha, \beta \in F(A)$, $M_{\alpha} \subseteq M_{\beta}$ if and only if $(\alpha \to \beta) \in N(M)$, then $M'_{\alpha} \subseteq M'_{\beta}$. An analogous condition does not hold for set W_{α} , W_{β} , even if f is a strong morphism of models; nevertheless if $W'_{\alpha} \subseteq W'_{\beta}$, then $W_{\alpha} \subseteq W_{\beta}$. To correct this state of affairs, we give the following

Def. 4. Let $f: M \to M'$ be a morphism of models; f is rigid if f is strong and for every $p' \in P'$ and every formula α , $p' \neq |\alpha|$ implies that there is $p \in P$ such that $p' \leq f(p)$ and $p \neq |\alpha|$.

Proposition 4. Let $f: M \to M'$ be a rigid morphism of models, then for every $\alpha, \beta \in F(A)$, $W_{\alpha} \subseteq W_{\beta}$ if and only if $W'_{\alpha} \subseteq W'_{\beta}$.

Proof. Suppose $W'_{\alpha} \notin W'_{\beta}$, the there is $p' \in W'_{\alpha}$ and $p' \notin W'_{\beta}$. By hypothesis there is $p \in P$ such that $p' \leqslant' f(p)$ and $p \notin W_{\beta}$. By (4), $f(p) \in W'_{\alpha}$ and also $p \in W_{\alpha}$. Hence $p \in W_{\beta}$, contradiction.

Theorem 5. Let $M = (P, \models, \rightleftharpoons)$ be a pre-model for A, then there is a "unique" extension of M to a model for F(A), with the same poset P.

Proof. Is obtained by induction.

For a model M, the set T(M) has «nice» properties, stated in the following

Proposition 6. Let $M = (P, \models, \rightleftharpoons)$ be a model for F(A), then for every formula α and β , the following hold:

- (a) if $W_{\alpha} = P$, then $M_{\alpha} = \{\underline{0}\}$ and if $M_{\alpha} = P$, then $W_{\alpha} = \{\underline{1}\}$;
- (b) if $\alpha \in M^+$, then $M_{\alpha} = \{\underline{0}\}$ if and only if $W_{\alpha} = P$ and if $\alpha \in M^-$, then $W_{\alpha} = \{\underline{1}\}$ if and only if $M_{\alpha} = P$;
 - (c) $(\alpha \land \beta) \in N(M)$ if and only if $\alpha, \beta \in N(M)$;
 - (d) if $\alpha, \beta \in T(M)$, then $(\alpha \land \beta) \in T(M)$;
 - (e) if $\alpha \in T(M)$, then $(-\alpha) \in T(M)$;
 - (f) if $\alpha, \beta \in T(M)$, then $(\alpha \rightarrow \beta) \in T(M)$;
 - (g) if $\alpha, \beta \in T(M)$, then $(\alpha \vee \beta) \in T(M)$;
 - (h) $F(\emptyset) \subseteq T(M)$.

Proof. (a) Trivial by Remark 4 and conditions (1) and (2). (b) Trivial, from (a) and Notation 2 (c). (c) Trivial by Notation 2 (a); (13) (and (4') of [2]). (d) Let either α or β be element of Z(M), then by (a) above, $M_{(\alpha \wedge \beta)} = \{0\}$. By Remark 6, $(\alpha \wedge \beta) \in M^+$, then by (b), $(\alpha \wedge \beta) \in Z(M)$. (e) If $\alpha \in N(M)$, $M_{(-\alpha)} = \{0\}$, then, using Remark 6 and (b), $(-\alpha) \in Z(M)$. If α is an element of Z(M), by (a), $M_{\alpha} = \{0\}$, hence, by (2') of [2], $M_{(-\alpha)} = P$, i.e. $(-\alpha) \in N(M)$. (f) Since $(\alpha \to \beta) \in M^+$ (Remark 6), by (b), proof is the same as proof of Proposition 4 (d) of [2]. (g) If either α or β (or both), belongs to N(M), then $(\alpha \vee \beta) \in N(M)$: by (a) $W_{\alpha} = \{1\}$ or $W_{\beta} = \{1\}$; by (17)' $W_{(\alpha \vee \beta)} = \{1\}$. Since, by Remark 6, $(\alpha \vee \beta) \in M^-$, from (b) it follows that $(\alpha \vee \beta) \in N(M)$. In case $\alpha, \beta \in Z(M)$, by (17)', $W_{(\alpha \vee \beta)} = P$, i.e. $(\alpha \vee \beta) \in Z(M)$. (h) From (13) (and (1') or [2]), it follows that $1 \in N(M)$; (c)-(g) give the result for all formulae of $F(\emptyset)$, built up out with truth symbol and connectives.

Notation 3. Given a formula α , denote by Sub (α) the set of all subformulae of α .

Def. 5. (a) Let M be a model for F(A), a formula α is hereditarily realizable in M if Sub $(\alpha) \subseteq R(M)$. Denote by H(M) the set of hereditarily realizable formulae.

(b) A subset F of F(A) is a fragment if for every $\alpha \in F$, Sub $(\alpha) \subseteq F$.

Theorem 7. There exists a poset P, with least and greatest element, such that for every non-empty fragment F there are two relations \models , \Rightarrow $\subseteq P \times F(A)$ such that $M = (P, \models, \Rightarrow)$ is a model for F(A) in which $H(M) = F(F \cap A) \subseteq T(M)$.

Proof. Proof is similar to proof of Theorem 5 of [2]. Take P as the set $\{\underline{0},\underline{1}\}^2$, with lexicographical order induced by natural order on $\{\underline{0},\underline{1}\}$. Trivially $(\underline{0},\underline{0})$ is the least element and $(\underline{1},\underline{1})$ is the greatest element of P. Given a fragment F, define \models_F as made in Theorem 5 of [2]. By Proposition 2, there is a bounded unity of relations \leqslant and \models_F on poset P and set A. By second part of Remark 3, in this way we get a pre-model M_F for A. Extend M_F to a model M, for F(A), as stated in Theorem 5. Prove, by induction, that the set $F(F \cap A)$ is contained in T(M): $1 \in T(M)$ and $\alpha \in A$ is in T(M) if and only if $\alpha \in F \cap A$. The remainder is a consequence of Proposition 6. Using induction, it can be proved that $H(M) = F(F \cap A)$: first step is trivial, i.e. $H(M) \cap A = F \cap A$, by definition of the model M. Suppose $\alpha, \beta \in F(F \cap A)$ and $\alpha, \beta \in H(M)$, then $M_{(-\alpha)} \cap W_{(-\alpha)} = \{0\}$ otherwise $M_{(-\alpha)} \cap W_{(-\alpha)} = \{1\}$ hence, in both cases, $(-\alpha) \in R(M)$. In a similar way can be proved that $M_{(\alpha \otimes \beta)} \cap W_{(\alpha \otimes \beta)} \neq \emptyset$, for $\otimes \in \{\vee, \wedge, \rightarrow\}$. Then $\alpha \otimes \beta \in R(M)$. In conclusion

 $F(F \cap A) \subseteq H(M)$. Conversely, if $\alpha \in H(M)$, then propositional letters in Sub (α) must be elements of $H(M) \cap A = R(M_F) = F \cap A$, or $\alpha \in F(\emptyset)$; it follows that $\alpha \in F(F \cap A)$. Hence $F(F \cap A) = H(M)$.

Given a model for F(A), $M = (P, \models, \rightrightarrows)$, and a fragment F such that $H(M) \subseteq F \subseteq M^+ \cap M^-$, we construct a new model M[F] in which M can be rigidly embedded. To prove this, first consider the bounded unity of relations \leqslant and $\models \nearrow (P \times F)$, and denote this by I_F . The relation I_F is a preorder on $P \oplus F$. Note that condition on the fragment F allows a simplification of (9): for $p \in P$ and $\varphi \in F$, $\varphi I_F p$ if and only if $p \rightrightarrows \varphi$.

Lemma 8. Define $\models (F)$, $\rightleftharpoons (F) \subseteq (P \oplus F) \times F(A)$, extending \models and \rightleftharpoons of M, setting for every $\varphi \in F$ and every $\alpha \in F(A)$, $\varphi \models (F)\alpha$ if and only if $M_{\varphi} \subseteq M_{\alpha}$ and $\varphi \rightleftharpoons (F)\alpha$ if and only if $W_{\varphi} \subseteq W_{\alpha}$, then I_F and $\models (F)$, $\rightleftharpoons (F)$ satisfy conditions (3)-(5).

Proof. Is a straightforward calculation.

Denote by \simeq the equivalence relation generated by I_F on $P \oplus F$, and set $P[F] = P \oplus F/\simeq$. The unity I_F gives rise to an order $\leqslant [F]$ on P[F]; then set $P[F] = (P[F], \leqslant [F])$.

Lemma 9. Let p, q be elements of P and $\varphi, \psi \in F$, then the following hold:

- (a) $p \simeq q$ if and only if p = q;
- (b) $p \simeq \varphi$ if and only if $M_{\varphi} \cap W_{\varphi} = \{p\}$;
- (c) $\varphi \simeq \psi$ if and only if $(\varphi \leftrightarrow \psi) \in N(\mathbf{M})$.

Proof. (a) Trivial. (b) If $p \simeq \varphi$, then $pI_F\varphi$, i.e. $p \models \varphi$ and $\varphi I_F p$, i.e. $p \rightleftharpoons \varphi$. By Remark 4, $M_{\varphi} \cap W_{\varphi} = \{p\}$. (c) By (10) $\varphi I_F \psi$ if and only if $(\varphi \to \psi) \in N(M)$ and then by Proposition 6 (c), $\varphi \simeq \psi$ if and only if $(\varphi \leftrightarrow \psi) \in N(M)$.

Lemma 10. Let x, y be elements of $P \oplus F$, such that $x \simeq y$, then for every $\alpha \in F(A), x \models (F)\alpha$ if and only if $y \models (F)\alpha$ and $x \models (F)\alpha$ if and only if $y \models (F)\alpha$.

Proof. Is trivial in case $x, y \in P$, by Lemma 9 (a). If $x \in P$ and $y \in F$, then $M_v \cap W_v = \{x\}$. If $x \models (F)\alpha$, then $x \models \alpha$ and $x \rightleftharpoons y$. Hence, every $p \in M_v$ is such that $p \leqslant x$, by (5), and by (3), $p \in M_\alpha$; therefore $M_v \subseteq M_\alpha$. Conversely, if $y \models (F)\alpha$, $p \models \alpha$, being $p \in M_v$. Proof for $\rightleftharpoons (F)$ is similar. In case $x, y \in F$, by Lemma 9 (c), $M_x = M_v$ and also $W_x = \nabla M_x = \nabla M_v = W_v$, since $F \subseteq M^+$. Result follows trivially.

Denote elements of P[F], using square bracket notation: if $x \in P \oplus F$, $[x] \in P[F]$.

[8]

Lemma 11. Let α be a formula and $x \in P \oplus F$, define $[x] \models [F]\alpha$ if and only if $x \models (F)\alpha$ and $[x] \models [F]\alpha$ if and only if $x \models (F)\alpha$. Then $M[F] = (P[F], \models [F], \models [F])$ is a model for F(A).

Proof. Trivially relations $\models [F]$ and $\rightleftharpoons [F]$ are contained in $P[F] \times F(A)$. Lemma 10 says that these relations are correctly defined. Observe that [0] and [1] are the least and the greatest elements of P[F], respectively; then conditions (1) and (2) are trivial. Lemma 8 states that also conditions (3)-(5) hold. In conclusion (12) is proved. Moreover (13) can be proved as in Theorem 6 of [2].

Take now $x \in P \oplus F$ and a formula α , if $[x] = [F](-\alpha)$, then $x = (F)(-\alpha)$; if $x \in P$, for every $p \in P$ such that $p \models (-\alpha)$, by (5), $[p] \leq [F][x]$; for every $\varphi \in F \text{ such that } \varphi \models (F)(-\alpha), \ M_{\varphi} \subseteq M_{(-\alpha)}. \text{ It follows } W_{(-\alpha)} = \nabla M_{(-\alpha)} \subseteq \nabla M_{\varphi}$ $=W_{\varphi}$, then $x \in W_{\varphi}$, i.e. $[\varphi] \leqslant [F][x]$. In case $x \in F$, $x = (F)[(-\alpha)$ means $W_x \subseteq W_{(-\alpha)}$; then if $p \in M_{(-\alpha)}$, $p \in M_x$, i.e. $[p] \leqslant [F][x]$, since $M_{(-\alpha)} \subseteq \Delta W_{(-\alpha)}$ $\subseteq \Delta W_x = M_x$. If $\varphi \in F$ is such that $[\varphi] \models [F](-\alpha)$, $M_{\varphi} \subseteq M_{(-\alpha)}$ and $M_{(-\alpha)} \subseteq M_x$, as before; then $M_{\varphi} \subseteq M_{z}$, that is $[\varphi] \leqslant [F][x]$. Conversely, if $[x] \neq [F](-\alpha)$, in case that $x \in P$, $x \neq (-\alpha)$ and then there is $q \in P$, $q \models (-\alpha)$ and $q \leqslant x$; this can be restated saying that there is [y] in P[F] such that $[y] \models [F](-\alpha)$ and $[y] \leq [F][x]$. In case that $x \in F$, $W_x \not\subset W_{(-\alpha)}$ and there is $q \in W_x$ and $q \notin W_{(-\alpha)}$; therefore there is $p \in M_{(-\alpha)}$ such that $p \leq q$. But $[p] \models [F](-\alpha)$ and if $(\forall y \in P \oplus F)([y] \models [F](-\alpha) \Rightarrow [y] \leqslant [F][x])$, then $[p] \leqslant [F][x]$. By (5) we get $p \leqslant q$, contradiction. In conclusion, condition (14) is proved. In a similar way conditions (15) and (16) can be proved. To show (17), let x be an element of $P \oplus F$, and $[x] = [F](\alpha \vee \beta)$; when $x \in P$, $[x] = [F](\alpha \vee \beta)$ is equivalent to $x = \alpha$ and $x = \beta$, i.e. $[x] = [F]\alpha$ and $[x] = [F]\beta$. In case $x \in F$, by (17)', the following are equivalent: $W_x \subseteq W_{(\alpha \vee \beta)}$ and $W_x \subseteq W_\alpha$, $W_x \subseteq W_\beta$. To prove (18), take $x \in P \oplus F$ such that $[x] \models [F](\alpha \lor \beta)$, then $x \models (F)(\alpha \lor \beta)$; if $x \in P$, then $x \models (\alpha \lor \beta)$ and for every $q \in W_{(\alpha \lor \beta)}$, $x \leqslant q$, therefore $[x] \leqslant [F][q]$. If $\varphi \in F$ and $\varphi = (F)(\alpha \vee \beta)$, then $W_{\varphi} \subseteq W_{(\alpha \vee \beta)}$, hence $M_{(\alpha \vee \beta)} = A W_{(\alpha \vee \beta)} \subseteq A W_{\varphi} = M_{\varphi}$; it follows that $x \in M_{\varphi}$, i.e. $[x] \leq [F][\varphi]$. In case $x \in F$, hypothesis means that $M_x \subseteq M_{(\alpha \vee \beta)}$; if $q \in W_{(\alpha \vee \beta)}$, $q \in W_x$, since $W_{(\alpha \vee \beta)} \subseteq \nabla M_{(\alpha \vee \beta)} \subseteq \nabla M_x = W_x$, then [x] $\leq [F][q]; \text{ if } \varphi \in F \text{ is such that } \varphi \Longrightarrow (F)(\alpha \vee \beta), \text{ then, as before, } M_{\alpha} \subseteq M_{(\alpha \vee \beta)} \subseteq M_{\varphi}, \text{ i.e.}$ $[x] \leq [F][\varphi]$. Conversely let $x \in P \oplus F$ be such that for all $[y] \Longrightarrow [F](\alpha \vee \beta)$, $[x] \leq [F][y]$ and suppose $[x] \neq [F](\alpha \vee \beta)$. That means $x \neq (F)(\alpha \vee \beta)$; in case $x \in P$, there is $q \in W_{(\alpha \vee \beta)}$ such that $p \leqslant q$, i.e. $[p] \leqslant [F][q]$, contrary to assumption. If $x \in F$, $M_x \not\subset M_{(\alpha \vee \beta)}$, then there is $p \in M_x$, with $p \notin M_{(\alpha \vee \beta)}$. It follows that there is $q \in M_{(\alpha \vee \beta)}$ such that $p \leqslant q$. But $[x] \leqslant [F][q]$, then $q \in W_x$ and by (5), $p \leqslant q$, contradiction.

Some other properties of the model M[F] are shown in the following

Lemma 12. Let $i: P \to P[F]$, be defined by i(p) = [p], then i is an injection and a rigid morphism of models $i: M \to M[F]$.

Proof. First part of proof is trivial: i is injective and is a strong morphism of models, by definition of M[F]. Let $x \in P \oplus F$ be such that $[x] \neq |F|\alpha$, where α is a formula; if $x \in P$, $[x] \leq |F|[x] = i(x)$, and $x \neq |\alpha$. In case $x \in F$, $W_x \not\subseteq W_\alpha$, then there is $p \in W_x$ and $p \notin W_\alpha$; it means that $[x] \leq |F|i(p)$ and $p \neq |\alpha|$.

Lemma 13. (a) $M^+ = M[F]^+$ and $M^- = M[F]^-$, then $M^+ \cap M^- = M[F]^+ \cap M[F]^-$. (b) $F \subseteq H(M[F])$.

Proof. (a) $M^+ \subseteq M[F]^+$ since i is rigid: take $\alpha \in M^+$ and suppose $\nabla M[F]_{\alpha} \neq W[F]_{\alpha}$, then there is $[x] \in \nabla M[F]_{\alpha}$ such that $[x] \neq [F]_{\alpha}$; by rigidity of i there is $p \in P$ such that $[x] \in [F][p]$ and $p \neq [\alpha]$. But $[p] \in \nabla M[F]_{\alpha}$, then $p \in \nabla M_{\alpha}$, i.e. $p \in W_{\alpha}$. $M[F]^+$ is contained in M^+ : if $\alpha \in M[F]^+$, let $p \in P$ be an element of ∇M_{α} , if [p] is in $\nabla M[F]_{\alpha}$, then $[p] \in W[F]_{\alpha}$ and so $p \in W_{\alpha}$, since i is a strong morphism of models; otherwise there is $\varphi \in F$ such that $[\varphi] \models [F]_{\alpha}$ and $[\varphi] \notin [F][p]$, i.e. $M_{\varphi} \leqslant M_{\alpha}$ and $p \notin W_{\varphi}$. But $\varphi \in M^+$, thence there is $q \in M_{\varphi}$ such that $q \notin p$; by previous inclusion, $q \in M_{\alpha}$ and by (5), $q \leqslant p$, contradiction. In a similar way can be proved that $M^- \subseteq M[F]^-$, using a condition of «corigidity» on i (i.e. reversing relations \leqslant and \ne) and that $M[F]^- \subseteq M^-$. (b) It is enough to prove that $F \subseteq R(M[F])$, since F is a fragment. Take $\varphi \in F$, trivially $[\varphi] \models [F]\varphi$ and $[\varphi] \models [F]\varphi$, hence $M[F]_{\varphi} \cap W[F]_{\varphi} \ne \emptyset$.

This conclude the proof of the assertion stated before Lemma 8. The model M[F] can be completely characterized by a property of «freedom». The following theorem resumes these results

Theorem 14. Let $M = (P, \models, \rightleftharpoons)$ be a model for F(A) and let F be a fragment such that $H(M) \subseteq F \subseteq M^+ \cap M^-$, then there is a model M[F], for F(A), in which M can be rigidly embedded, by means of $i: M \to M[F]$. Moreover $F \subseteq H(M[F])$ and $M^+ \cap M^- = M[F]^+ \cap M[F]^-$.

For every model $M' = (P', \models', =')$, for F(A), such that $F \subseteq H(M')$ and for every rigid morphism of models $f: M \to M'$, there is a unique rigid morphism of models $f': M[F] \to M'$, such that $f' \circ i = f$.

Proof. Let M' and f satisfy hypothesis, define $f': P[F] \to P$ as follows f'([p]) = f(p) and $f'([\varphi]) = \max M'_{\varphi}$. Note that if $p \simeq \varphi$, in $P \oplus F$, then $p \models \varphi$ and $p \models \varphi$, simultaneously; thence $f(p) \models \varphi$ and $f(p) \models \varphi$. Therefore $M'_{\varphi} \cap W'_{\varphi} \neq \emptyset$ and $f'([p]) = f(p) = f'([\varphi])$. If $\varphi \simeq \varphi$, then by Lemma 9 (c),

 $(\varphi \leftrightarrow \psi) \in N(M)$ and by Remark 7, $(\varphi \leftrightarrow \psi) \in N(M')$; it follows that $M'_{\varphi} = M'_{\psi}$ and also max $M'_{\varphi} = \max M'_{\psi}$, i.e. $f'([\varphi]) = f'([\psi])$. This shows that f' is correctly defined.

Let x, y be elements of $P \oplus F$. If $[x] \leqslant [F][y]$, we show, by cases, that $f'([x]) \leqslant' f'([y])$. When $x, y \in P$ is trivial. If $x \in P$ and $y \in F$, $[x] \leqslant [F][y]$ means $x \models y$, then $f(x) \models' y$. By hypothesis $F \subseteq H(M')$, then $f'([x]) = f(x) \leqslant' \max M'_y = f'([y])$, by (11). In case $x \in F$ and $y \in P$, $[x] \leqslant [F][y]$ means y = x, then f(y) = f'(x) again by (11), $f'([x]) = \min W'_x \leqslant' f(y) = f'([y])$. When $x, y \in F$, $[x] \leqslant [F][y]$ means $M_x \subseteq M_y$, then by Remark 7, $M'_x \subseteq M'_y$, then $f'([x]) = \max M'_x \leqslant' \max M'_y = f'([y])$. We can easily reverse passages above and conclude $[x] \leqslant [F][y]$ if and only if $f'([x]) \leqslant' f'([y])$. Let x be an element of $P \oplus F$ and let α be a formula. Suppose $[x] \models [F]\alpha$. If $x \in P$, this is equivalent to $x \models \alpha$ and also $f(x) \models' \alpha$, since f is strong, thence $[x] \models [F]\alpha$ if and only if $f'([x]) \models' \alpha$. In case $x \in F$, $[x] \models [F]\alpha$ is equivalent to $M_x \subseteq M_\alpha$; this condition can be written: $(x \to \alpha) \in N(M)$. By Remark 7, N(M) = N(M'), then $[x] \models [F]\alpha$ is equivalent to $M'_x \subseteq M'_\alpha$. But $x \in H(M')$ and so there is p' such that $M'_x \cap W'_x = \{p'\}$ and $p' = \max M'_x$, p' = f'([x]). By (11) and (3), $[x] \models [F]\alpha$ is equivalent to $f'([x]) \models' \alpha$.

Suppose now $[x] = [F]\alpha$. If $x \in P$, this is equivalent to $x = \alpha$ and also to $f(x) = \alpha$, since f is a strong morphism; thence $[x] = [F]\alpha$ if and only if $f'([x]) = \alpha$. In case $x \in F$, $[x] = [F]\alpha$ is equivalent to $W_x \subseteq W_\alpha$. But f is a rigid morphism of models and by Proposition 4, $W_x' \subseteq W_\alpha'$, then $f'([x]) = \min W_x' = \alpha$. Conversely if $f'([x]) = \alpha$, for every $p \in W_x$, $f'([x]) \leq f(p)$, by (11). It follows that $f(p) \in W_\alpha'$, by (4), and $f'(p) \in W_\alpha'$, since $f'(p) \in W_\alpha'$, i.e. $f'(p) \in W_\alpha'$, by (4), and $f'(p) \in W_\alpha'$, since $f'(p) \in W_\alpha'$, i.e. $f'(p) \in W_\alpha'$, and $f'(p) \in W_\alpha'$, then there is $f'(p) \in W_\alpha'$, then that $f'(p) \in W_\alpha'$, and $f'(p) \in W_\alpha'$, then there is $f'(p) \in W_\alpha'$, then that $f'(p) \in W_\alpha'$, and $f'(p) \in W_\alpha'$, then there is $f'(p) \in W_\alpha'$, then that $f'(p) \in W_\alpha'$, then there is $f'(p) \in W_\alpha'$, then that $f'(p) \in W_\alpha'$, then there is $f'(p) \in W_\alpha'$, then that $f'(p) \in W_\alpha'$, then there is $f'(p) \in W_\alpha'$, then that $f'(p) \in W_\alpha'$, then there is $f'(p) \in W_\alpha'$. Thence $f'(p) \in W_\alpha'$, then there is $f'(p) \in W_\alpha'$, then there is $f'(p) \in W_\alpha'$. Thence $f'(p) \in W_\alpha'$, then there is $f'(p) \in W_\alpha'$, then there is $f'(p) \in W_\alpha'$. Thence $f'(p) \in W_\alpha'$, then there is $f'(p) \in W_\alpha'$, then there is $f'(p) \in W_\alpha'$. Thence $f'(p) \in W_\alpha'$, then there is $f'(p) \in W_\alpha'$, then there is $f'(p) \in W_\alpha'$. Thence $f'(p) \in W_\alpha'$, then there is $f'(p) \in W_\alpha'$, then there is $f'(p) \in W_\alpha'$.

References

- [1] H. Crapo, Unities and negation: on the representation of finite lattices, J. Pure Appl. Alg. 23 (1982), 109-135.
- [2] C. MARCHINI, Realizations and witnesses for Kripke models, Proc. 2nd World Conf. on Math. at the Service of Man, Las Palmas (1982), 471-476.

Abstract

Recently H. Crapo (cf. [1]) introduced the concept of unity of a relation in the context of representation theory for finite lattices, suggesting an application to Logic. Starting from that, I give a slightly modified version of the notion of unity, in order to obtain an interesting semantics. In this field I extend the notion of realizability, given in [2], and prove the following result: For each model M and fragment F of propositional logic, satisfying a few mild hypothesis, there is an extension M[F] in which every element of F is realizable.

* * *