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MAURO FABRIZIO ana CLAUDIO GIORGI (%)

A nonlocal phenomenological theory

in superconductivity (**)

A Luier CaAPRIOLI per il guo 70° compleanno

1 - Introduction

It is known that superconductive phenomena make their appearance in
metals, in metallic conductors and in several compounds at temperatures near
absolute zero [17].

Superconductivity was first discovered by K. Onnes [12] in 1911 in the
course of an investigation of the electrical resistance of various metals ab
about 3° K. He observed the first characteristic property of a superconductor:
that is, its electrical resistance, for all practical purposes, is zero below a well-
defined temperature 7T, called the «critical » or «transition » temperature.

At any temperature T below T,, the application of a magnetic field H,(T),
or a suitable transport current producing it, destroys the superconductivity
and restores the normal resistance appropriate to the field. H, is called
« thermodynamic critical field ».

In 1933 Meissner and Ochsenfeld [10] observed that the magnetic induc-
tion B inside a bulk superconductor vanishes. It is the so called « Meissner
effect » which is to be regarded as the second foundamental characteristic of
a superconductor. Further experimental results [17], [18],, [15] showed that B

(*) Indirizzo: Dipartimento di Matematica, P.za di Porta 8. Donato 5, 40127 Bo-
logna, Italy. '
(**) Lavoro eseguito nell’ambito del G.N.F.M. (C.N.R.). — Ricevato: 1-VI-1984,
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takes nonzero values in a thin region near the boundary of the sample and
drops to a vanishingly small value over a characteristic length called «field
penetration depth».

It was emphasized by F. Londoen [7] that the pure superconducting state
in a magnetic field has a persistent shielding current associated with it. This
current, called «supercurrent », is always determined by the local magnetic
field; for sample of macroscopic size it must be confined to a region very close
to 1he surface.

In order to give a consistent description of the electromagnetic properties
of superconductors listed above Maxwell’s equations have been combined with
London’s ones [8];,

2
(1) s AD=E, (2) V(AT) = — pH,

with 4 = m/ne?, m, ¢ and n being respectively the mass, charge and volume
density of the conduction electrons. The former accounts for the zero-resistance
phenomenon, the latter explains the Meissner effect.

Although the London theory provided a framework for organizing most
of the experimental data, nervertheless it was not able to give an exhaustive
explanation of all superconductive phenomena. It turned out that various
anomalous results do not fit into the theoretical picture provided by (1) and
(2): e.g. the variation of A with orientation in a single crystal [13], and the
strong change observed in the penetration depth if impurities are added to
pure materials in so small amount that all others physical properties remain
unchanged [13];.

To describe these anomalous effects Pippard [13], proposed the following
nonlocal relation bebtween the current density J at a point and the vector
potential 4

@) J) = 3ne? J,r(A(lla;;)'r)

TEm

exp [— R[E1dv,

where r = & — &', B = |r| and VX4 = H. The constant & is a characteristic
parameter for the pure material and &, called «coherence length », is related
t0 & and the mean free path L

The two striking advantages that the Pippard theory made were the elu-
cidation of the non-local nature of the curient-field relation and the specifi-
cation of the coherence length.

Unfortunately, Pippard’s relation must be added to equations (1)-(2) not
replacing them so that the nonlocal theory arising from (3) does not represent
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a new mathematical model of superconductivity but it may be considered
merely as a modification of the London one. In essence, the empirical nature
of equation (3) is due to the fact that Pippard obtained his results empirically.

Improving previous results [5] in the first part of this paper we make some
remarks on the London theory. The former remark (sects. 3, 4) shows that
equation (2) alone allows us to account for the zero-resistance phenomenon
not making use of equation (1) as London did. Not only is the addition of
eq. (1), characterizing perfect conductors, quite superfluous, but even it is in
direct contradiction with the nature of superconduetivity. Indeed such a
nature is totally different from the one of perfect conduetivity.

In the latter remark (sect. 5) we emphasize an equivocation which seems
to be present in many works on phenomenological theories of superconduc-
tivity [1], [2], [11]. Thatis the statement that the London theory is a local one.

Although eq. (2) leads to the pointwise relation

(4) J@) = —5 A@)  we,

where A is the vector potential for H satisfying the so called « London gauge »,
this statement is not quite correct since the boundary condition, 4+n = 0
on 0f, in the London gauge already involves a nonlocality. Such a non-
locality is very apparent in the current-magnetic field relationship as we shall
see in sect. 5. Apart from this, we point out that for any given field H
on £ it is necessary to solve the same boundary value problem to obtain
either J or — (u/4)A, that is

VxJ= Vx(—gA) :——%H, VJ=V-d=0, Jn=4An=0 on 3.

Thus ¢q. (4) seems to be merely an identity.

The aim of the second part of this paper (sects. 6, 7) is' to formulate 2
phenomenological theory of superconductivity unifying and in a certain sense
simplifying Loondon’s and Pippard’s ones. To this end we replace equation (2)
with the following one

5) Vx(A)) = — B(E H,

? 7atJ)'

When combined with Maxwell’s equations eq. (5) formulates the low frequency
electromagnetic behaviour of superconductors in such a manner that both
London and Pippard formulations can be obtained from it by a suitable choice

of the function 1§(E, H, (3/et)J).
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Taking into account alternating fields we are able to give the current-
magnetic field relationship in both cases by means of suitable dyadic Green’s
functions. Finally we show that there is no dissipation at low frequencies.

2 = Preliminaries

Let X, ¥, Z be material points of a rigid body £ occupying a domain £
of the three dimensional euclidean space &. We shall identify each material
point X € # with the geometric point @ = (@, @, #;) € 2 occupied by it. As
usual, let 202 be the boundary of 2 and n be the unit vector normal to 2.
Moreover, let I = {t:t€ (0, ')} be the interval spanned by the time variable 1.

To describe electromagnetic phenomena inside the body % we shall intro-
duce the following vector fields defined on @ = Q XI: the electric field E, the
electric displacement D), the magnetic field H, the magnetic induction B, the
current density J.

Whatever nature the body may have the vector fields listed above must
satisfy Faraday’s and Ampere’s laws. If the fields are smooth enough these
laws can be expressed by means of Maxwell’s equations

0
(6) VXE:-—&B, (7 V><H-— D—I—J

Further relations between the fields are needed to specify electromagnetic
features of the material forming the body. Such «constitutive » relations may
be stated by functional or differential equations.

Ordinary dielectrics and electromagnetic materials with memory, for exam-
ple, belong to the former group. The electromagnetic plopeltles of ordinary
dielectrics are embodied in the following relations

(8) D(,1t) = D(E(z, 1), H(z, 1)), (9) B(e,t) = B(E(z, 1), H(z,1)).

Considering materials with memory functions (8)-(9) have to be replaced
" by some functionals, that is

~

D(z,t) = D(E¥2), H(z)), B(x,t) = B(E!(z), H()),

with Ef(z) and H(z) being respectively the «history » of the fields E and H
up to time ¢ at the point z e L.

On the other hand, we shall see later that some matberials such as perfect
conductors and superconductors can be specified by some ordinary or partial
differential equations. Constitutive relations of such a type belong to the latter
groups and have not been much considered.



[56] A NONLOCAL PHENOMENOLOGICAL THEORY IN SUPERCONDUCTIVITY 419

Tn the following sections perfect conductors and superconductors are taken
into consideration and beyond some physical analogies the difference between
their mathematical models is emphasized.

3 = Perfect conductors

The electrodynamics of most isotropic conductors are described by Max-
well’s equations along with the following constitutive relations (%)

(10) D(2, %) = e(w) E(, 1) , (11) B(z, ) = }“(m)H(vw’ 1,
0
(12) A é—t.f(% 1) + rJ(w, 1) = E(x, 1),

where & and u are respectively the dielectric constant and magnetic perme-
ability of the medium. The constants A and r are non negative characteristic
parameters of the material: » is the normal resistivity, the ratio A/r is called
«relaxation time». We point out that eq. (12) can be justified on the basis
of a miecroscopic theory (2).

If the electrical resistance is so large that 2 is negligible with respect to 7,
as in normal conductors, then eq. (12) leads to Ohm’s law

(12)" J=oE,

with ¢ == 1/ being the normal conductivity.
Oun the contrary, if the resistivity » is vanishingly small, as in perfect con-
ductors, eq. (12) implies

9
(12)" 2J=E.

Since A <« 1, many results about perfect conductors have been obtained by
setting E =0 on Q. Unfortunately, this sharp approximation seems to be
insufficient to properly describe conductivity near the boundary of a con-
ducting medium (« skin effect »), and then it will be rejected.

(*) A nonlinear generalization of them can be given as follows

~

p-DEHJ], B=BEHI, %J=HEHD.

(2) See for example [18], pp. 97-98.
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Assuming E, H, J as independent variables and using relations (10), (11),
the system of partial differential equations (6), (7), (12)" may be solved. We
shall now show that the corresponding initial-boundary value problem with
initial eonditions

(13)  E(w,0) = Ey(z), H(#,0)=Hy(2), J(,0)=Jyz) on 0,
and boundary condition
(14) Exn=0 on 2QxI,

is well posed.
We first note that by means of (10), (11) and (12)" Poynting’s theorem,
stated by

(15) ——_fE'XH'ndazf(%q-H.{_ a,\—D—'E+J-E)da;,
aR o ol ot

leads to the following balance equation

(16) ——fEXH-nd(;:-(_i{%_J'(#Hz_*_aEz_*_;{Jz)dw}_
o) dt Y g

Thus the electromagnetic energy defined by i[(uH? + eB? 4 AJ%) dw is
0

conserved if (14) holds on the boundary. The lack of dissipation proves that
eq. (12)" sucecessfully explains the experimental behaviour of perfect conduec-
tors. Integrating (15) over I and using relations (13), (14) we get

(17) J(uHXT) + eBXT) + AJ%(T)) dow = [(pH2 + eB2 + AJ2)da

2 2
With homogeneous initial conditions, that is E,=H,=J, =0 on 0, the
relation (17) leads to the vanishing of E, H, and J almost everywhere on
Q= QxI.

We thus see that the initial-boundary value problem stated below uniquely
determines the currents and the fields in a perfect conductor. Because of the
linearity of such a system it does not seem difficult to prove an existence the-
orem as well.

4 - Superconductors

Two-fluid models have played a prominent role in the development of our
understanding of both quantum liquids: the electron fluid in superconductors
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and liquid helinm. In the case of superconductors the electredynamics of a
two-fluid model was worked out by F. and H. London [8]; .. The London
theory assumes that the current in a superconductor, J, is composed of a
« supercurrent » J, and a normal current J.. The former is due to the «super-
conducting » portion of the conduction electrons and is ruled by London equa-
tions (1), (2) while the latter obeys Ohm’s law (1zy.

As a simplifying assumption we shall ignore the contribution due to J,
so that J=J, (?). Nevertheless, an exhaustive treatment would involve no
serious difficulties. Moreover we shall simply assume that there is total charge
neutrality, leading to the vanishing of ¢ and V-J. This is eminently reasonable
and usually accepted [1], [16].

Under these assumptions, in order to develop an electrodynamics of super-
conductors on a phenomenological basis, we suggest the following constitutive
equations

(18) Vx(dJ)=—8B, (19) D = ¢FE,

0
(20) B-:,uH—{—v-a—tJ,

with » being a non negative constitutive parameter depending on impurity
contenent (*). Furthermore » is supposed to be vanishingly small in pure
materials. In this case eq. (20) reduces to

(21) B = uH,

so currents and fields in pure specimens are related by London’s equation (2).

Since the value of A is about 10~ abH-cm (see [4], p. 28) we note that
the vanishing of the field B deep inside a macroscopic superconductor is always
contained in eq. (18).

We shall show now that for the quasi-static case egs. (18), (19), (20) are
able to account for both Meissner effect and zero-resistance phenomenon.

Because of static conditions all time derivatives vanish, so that by com-
bining eqgs. (18), (20) we get eq. (2). It turns cut that the second London
equation covers not only the Meissner effect in bulk superconductors, but also
the magnetic properties of samples with dimensions ccmparable to the « pene-

(3) This is really the case in static condibtions and in alternating fields at low fre-
quencies (less than 10%° Hz). See also [16], p. 247 and [4], p. 18.
(*) This means that » varies with electronic mean free path, unlike & x4 and 4.
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tration depth» A (see [1], [4], [9]). Comparison with the London theory [17]
leads to the relation

(22) A= \/% (~10-% cm) .

To account for the zero-resistance phenomenon the Liondon theory retains
eq. (1), borrowing it from the «perfect conductors» theory (see eq. (12)7).
As emphasized by London eq. (1) does not always follow from eq. (2) and
must be considered as an independent Postulate. Nevertheless eq. (2) it self
implies that no dissipation oceurs in superconductors. The proof is as follows.

Differentiating eq. (18) with respect to time and using Maxwell’s equa-~
tion (6), we have

(23) VX%(AJ)=V><E.

By solving eq. (23) for a simply connected superconductor in a domain O c R?
t can be shown that

2
(24) 5 (Af)=E+ V9,
with @ being any smooth sealar function defined on @ = 2 xI. Then, making

use of eqs. (19), (20) and substituting for E from eq. (24), Poynting’s theorem
(see (15)) leads to

(25) —[ExH-ndo = i{% f(/zH"‘—{—sE'z—}—AJz)dw}—]Lva‘ o Jdz —[J - VPasz .
80 di *g g o2 o

Assuming as usual
(26) Jn=0,
on the boundary 202 of an insulated superconductor, since
(27) V-J=0 on Q,
the last integral on the right hand side vanishes
fJ—V@dm::f@J'nda——f@V-Jdm =0.
2 an o

Thus there is no Joule dissipation.
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Supercurrents preservation therefore follows in the stationary case as well
as in pure samples. As we shall see later (sect. 6), the same result approxima-
tely holds even in alternating field at low frequencies.

Not only the zero-resistance phenomenon but even the absence of any
«Hall effect » can be accounted for by egs. (18), (19), (20) not resorting to
perfect conductivity arguments [1].

Because of the charge neutrality, o = 0, the electromagnetic momentum
balance leads to

)
(28) -a-z(DxB)—HxB:V-T,

where T'is the Maxwell stress tensor, defined by
T=E®D-+HQB-—L(E-D-+H-BI.
From egs. (18), (27) it follows that
(29) JXB=—AJxX(VxJ)=—V-8§,

with 8 = A(}J2I—J®J) being the so called « London stress tensor ».
Equation (28) may therefore be rewritten as

9

P (DXB) = V-(T+8) and under stationary conditions V(T -- S)=0.

Thus there are no volume forces acting on the superconductor. Further,
eq. (29) also implies that the Lorentz force is exactly balanced by the inertial
force — AJ X (V x.J), so that there will be no Hall effect in a superconductor.

5 - Nomlocality of the London theory

As F. London showed [7], the second London equation takes a particularly
simple form when one introduces & vector potential 4 for the magnetic field H

(30) VxAd=H.
Replacing the field by 4 and choosing a gauge such that

81)  V-d=o0, (32) A-n=0 on 3@,
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equation (2) reduces to

I
(33) J=—54.

The same result leads even from eq.'(18) by introducing a vector potential 4
for 1/uB

(30) Vxd==08.

T

The gauge (31), (32) is sometimes referred to as the « London gauge ».

Applying the pointwise relation (33) to eqs. (18), (19), (21) it turns out
that the values of D, B, H at € 2 can be obtained by specifying just the
values of E, H, 4 at the same point. Inspite of this, it is not quite correct,
as has sometimes be done, to call eq. (33) a «local relation». Indeed, the
London gange with boundary condition (32) implies that 4 is specified at
more than just the point at which J is being measurzad, and hence already
involves a nonlocality [4].

Apart from these reasons, we note that the same boundary value problem
has to be solved in order to obtain J as well as — (u/A4)4if H (or B) is known.
Indeed, given H on Q, the linear system (2), (27) (or (18), (27) if B is given)
with boundary condition (26) is identical to (30}, (31), (32) (or (30)', (31), (32))
which defines the vector potential. Hence, the statement (33) is merely an
identity and thus can not represent any constitutive relation.

It will be shown here that the nonlocal nature of the second Liondon equa-
tion is emphasized by the current-field relation solving egs. (2), (27) for a
bulk superconductor. '

By introducing the parameter 1 defined in (22) we get

1
(34) VXJZ“I%H’ V- J=0.

Moreover, the following boundary condition

(35) J———%an on 22,

i assumed to be satisfied on the surface of an insulated superconductor. It
turns out that such a condition implies (26) and is a very close approximation
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when the radius of curvature of the surface is large compared with the pen-
etration depth A (5).

It can be shown that for any given solenoidal field H on Q= Q U 3Q

there is one and only one solution J to the problam (34), (35).
In order to prove uniqueness let us consider the difference J= J,—J,

between solutions Ji, J, of (34), (35). Such a function satisfies the homoge-
neous problem

VxJ=0, VJ=0, J=0 on 2,

which leads to J=10 in @, as it is well known.

Now we want to express the solution J at a point 2’ € 2 as a function of
the whole field H on Q. To this end we note that (34), implies the existence
of a sufficiently smooth field K such that

(36) VxK=1.

It follows from (34), (35) that
1 . 1 .
(37) VXVXK:“]EH in Q, (38) (VXK):ZnXH on ofl.

Let us consider the identity

(39) Jinx(VxK) T+ nX K- (VxT)]do=[[VXVXK-T—K-VxVxIdo,
2

an
where I'(z, ') is a tensor defined on R3X RS, If we choose

(40) T'=@q,l,

with I being the unit tensor and &, = 1/4nR, R = |z — 2’|, being the solution
of the problem

(41) AGy(R) = —(R), limGyR) =0,

B>

(°) See for example [1], pp. 290-293, [4], pp. 29-31.
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then (39) leads to
1 1
K@) = —— [GHdv + 5 [GH,do—[K-VVG,dv
2’2 o] 7" onR v
—f(nxK)-VxGlIdo z'e Q,
a0

where H, = (n X H) Xn is the component of H parallel to 9£2. By means of
(36) we get J(»') = V' xK(z') (V'= 0/ox’), thus it follows that

@)  J@)=—7 [V@xHl +3 [VExHds—[K-V xVV6,do
Q on 2
—f(nxK)- V' XV xGIdo.
an

A straightforward computation yields the vanishing of the last two inte-
grals on the right-hand. Indeed, using (41) the last integral reduces to

—[(nxK) - V'VGydo = —[(n-VxXK)V'G,do
80 8n

and then (38) allows it to vanish. As a result we arrive at the following cur-
rent-field relation

(43) J@) = —% [ V'@ xHI+> [V'&xHdo,
A% g Ao

at any point z'e .

6 - General constitutive equations :

Let us consider now the general constitutive equations (18), (19), (20) we
have previously proposed for superconducting materials.

‘We shall deal with the following boundary value problem arising when
fields depend on the time by a common complex factor exp [ 1wi]

(44) VxJ+ ¢y1=—11-21—1, VJ=0,

(45) J=3mxH onaQ,
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where A2 = A/ and y = vo/d. In such a problem H and J are complex vector
valued functions depending on @ alone. Henceforth H is supposed to be a
solenoidal field in order that V-J = 0 may be obtained as a consequence of
eq. (44). :

Under these assumption and for any given solenoidal field H we want to
solve the problem (44)-(45) expressing its solutions by means of suitable dyadie
Green’s functions. ‘ S o

First, in order to prove uniqueness of solutions, we take into consideration
the problem

(46)  VxJ+ipJ=0, (47) J=0 on @,

where J = J, —J, is the difference between two solutions of (44), (45) cor-
responding to the same choice of H.

Taking the eurl of (46) and multiplying the result by J" the conjugmte
of J, then integrating over £2 leads to

=[(VXVxJ+ iyVxJ)-J*dv .
Jo) .
_—:a!j;n-(V xJ) xJxdo +J(V xXJ VxJ* 4 p2J-J¥) dv

Using (47) it follows that,
{1V |20 + 2] |T|*d0 = 0,
a Fe} :

and then J must vanish. v .
On the other hand, in order to express J(#) as a function of H we shall
introduce a dyadic Green’s function I'(z,«') satisfying

(48) VXTI 4 iyI'=—0I in R?,

for all 2’ R®, where 6 = d(z — 2') is the Dirac delta function and I the unit
tensor. Further we suppose

(49) o | 13{1200 Tz,2)=0.
Taking T'= T, -} ¢I%, with I', and T, being real tensors, we get
(50) VXD — 9yl = —0I, Vx4 yI'=0.
Substituting for I'y from (50), inte (50), yiélds
(51) Vx VI, 4 p20y = yoI. -

28
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It turns out that a solution of eq. (51) satisfying (49) can be expressed
as follows (¢)

1
(52) Ty=y[I+ ;;VV’]G,
where @ = (1/4nR)exp [—yR], B=|x —a'|. Essentially, this result rests
on the fact that & solves (4 —9*)G == --4 in R3. As a consequence we get
(53) I = — Vx(GI).

Substituting eqs. (44)-(48) into the identity
fn-(JxTdo={(VxJ-T—J VxT)dv,
00 Q

a straightforward computation yields the following relation

J@') = %2 JH(a:)-I‘(w, ') dv —;Aj;[n(m) xJ(@)] - T(w, ') do ,

at any point 2'e 2. Hence, by means of (45), it follows that

(54) J(x') = il-zng(m)-I‘(w, 2"y do — %asf)Ht(m)-I‘(m, 2)do,

where H,== (n X H)Xn.
Assuming that Q=R? and introducing a vector potential 4 such that
VxA=H and V-4 = 0, then by means of (49) from eq. (54) we obtain

J(@') = Al JA(@) V<T@, 2)do

Since VXI'= —VVGE + AGI 4 iyVG x I and G= (1/4nR) exp [— pR], setting
F(R) exp [— yR]= — VVG + AGI + iyV@ x I we have the following relation

(55) J(=') = ;%;A'AF exp [—yR]dv,

which is very similar to (3) if we assume & =1/y.

(°) See for example [6], Appendix I, pp. 385-386.



[15] A NONLOCAL PHENOMENOLOGICAL THEORY IN SUPERCONDUCTIVITY 429

Our aim is to show now that a current-field relation such as (54) implies
that no energy dissipation occurs at low frequencies. Taking into account
harmonie fields, Poynting’s theorem (25) may be rewritten as follows

[n-ExH#*do = io[(s|E|2 — u|H|?— A|J |* — o] - H¥) dv .
a0 Q
In order to express the term ¢wrJ-H* in a suitable form, we give the expres-
sion of I' as a function of y; that is

1
(56) I(y) = 5 &P [—yRUT, + yTy + 2 To) where

T, = —iVV'G, T:=VGxI+i(@VV'R+2V6,@V'R),
T, — — G, [VRx I+ i(V'R® VR + I)

are tensors independent of y since G, = 1/4nR. By means of (56) we obtain
jond = i SX [[H-Tdo— A[H,- Tdogl = i 2. [L+ 7L+ y* L],
A% g s yaR

where I.=[H-Tyexp[—yR]dv —A[H; Txexp [—yR]do, for «=0,1,2.
g a2

Setting now & = 1/y and remembering that 22 = Afu and y = wy/4, it
turns out that

1

EZ‘IZ] .

. . 1
(57) fovd = tu[I, 4+ i I, -

If we choose the parameter » such that »/4 ~ 1/¢, with ¢ = 1/ ep, then
from the assumption (?) o < ¢/A it easily follows that the « coherence length »
& is much larger than the «penetration depth» 4 (& > 1). Hence, we can
ignore the terms 1/£I, and 1/&21, of (57) and the surface integral in I, so that

i)~ u[H-VV' Gy exp [—R[E]dv .
2
In order to complete our proof we point out that the quantity
jv [J - H*Qv'~ pf [H-VV' G, exp [— R[EJH* dv do’
2 2 2

(") It ig interesting to note that in the case of a plane boundary such an assump-
tion leads to a penetration depth which is approximately equal fo A.
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is a real number. Indeed, since the kernel Kz, #')=VV'G,(R) exp [— R/E] is
a real symmetric tensor such that K(z,2') = K(2', ), it turns out that

1]

(2]
(3]
(4]

(5]

(6]
(71
(8]

[9]
[10]
(11]

(2]

[13]

[14]

(15]
[16]

(7]
(18]

HE WE W

(H(x)-K(z, ') - H*(2"))* = H(a")- K(a', ) - H*(a) .
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