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Remarks on the Bolitzmann equation

for electrons in a gas in electric and magnetic fields (**)

A TLootet CAPRI10LI per il suo 70° compleanno

1 - Introduction

In this note we are concerned in the problem of the motion of a swarm of
electrons (mass m, charge -¢, number density n) in a background gas of atoms
(mass M, number density N) in equilibrium at a given temperature T, under
the action of an electric field E and a magnetic field B. Our aim is to throw
light on the validity of some truncation procedures of solution of the Boltzmann

“equation governing the electron distribution funection. A particular attention
is turned to a perturbation method of solution suggested by I. B. Bernstein [1]
and to the meaning of certain equations.

As known, the Boltzmann equation relevant to a swarm of electrons under
the above conditions is

of(r, v, ?)
(1) ratv

e 1
=+ v-Vf(r, v, 1) ~m [E(r, ) +é‘ vXB(r)]-V,f(r, v, 1)
= J(f(r, v, 1)) .
Ineq. (1), Vand V, are the gradient operators in the position and in the velocity

(*) Indirizzo: Dipartimento di Matematica, Via Universitdh 12, 43100 Parma,

Italy.
(**) Lavoro eseguito nell’ambito del G.N.F.M. del C.N.R. — Ricevuto: 22-XII-1983.
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space, respectively, and J is the so-called collision integral. If we suppose
n < N, in order that electron-electron collisions can be neglected, and we con-
sider only elastic collisions, J is a linear integral operator.

The conventional method of solution of eq. (1) is based on a truncation of
the development of f in spherical harmonics in the velocity space, neglecting
the terms which are of sufficiently high order with respect to a small parameter,
characteristic of the problem (see, for example [2], [3] and references quoted
therein). It is clear, however, that sueh a truncation presupposes an a-priori
evaluation of the coefficients of the spherical harmonies expansion with respect
to the small parameter.

For these reasons, it may be suitable to start with a different development,
just suggested by Bernstein, under the agsumptions

(2) Tw|0logflot| <1, |eBr,/m| <1, ovr,/L<K1.

In (2) 7, = 7,(v) is the mean time-of-flight for momentum transfer relevant
to an electron of speed v, i.e.

(3) =v,,(v)=Nvfo(v, 1)(1 — cos %) d!):?nfq(v, N1 — cos g) sin y dy,
Tm(/v) 2 0

where o(v, %) is the elastic differential cross section; moreover, L is a macro-
scopic scale length and we suppose |Vlegf| ~ (1/L). Assumptions (2) presume
that the mean energy gain per free path due to the electric field is much less
than the thermal energy and also presume situations which change very slowly
on the seale of 7,,. Then, if we assume as characteristic small parameter the
quantity o =4/ W, we can consider the quantities on the left-hand-sides
in (2), and (2), of the first order in «, if the assumption is made that the electron
and atom energy are of the same order of magnitude (see [1], pp. 135-136);
moreover the left-hand-side in (2), may be considered of the second order in o
(see [1], p. 137). As regards the magnetic field B(r), it will not be assumed to
be small, so that the gyration frequency w,= eBJ(mc) is allowed to bear an
arbitrary relation to 7,.(v).

Now, let us seek a solution of eq. (1) of the form

(4) fry v, 1) = folr, v, 8) + fulr, v, 8) + folr, 0, 0) 4.0y

where f,, fy, /2, ... are respectively of order 0,1, 2, ... in the parameter a. It is
_just the development (4) the starting point for onr discussion,
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2 - Liquations for f, and f,

Let us now consider the terms of the lowest order in « in eq. (1). Then the
following equation for fy(r, v, ) is obtained

w, Ofo(r, v, t

(%) 222 1o, 20 1) — ok, v, 9102,

where: f is the longitudinal coordinate in the w-space, with the polar axis
along B; u = (2nn — |,), where b, is the unit dyadic and n is the unit vector
directed along the bisector of the angle between the relative velocities before
and after collision; note that [u| = [v] (}).
As shown in [1], it can be seen that each solution of (5) is isotropic in v, i.e.
folry v, 8) =fo(r, v, 7) .

If we now proceed to first order in the small parameter «, taking into account
agsumptions (2) and following observations, eq. (1) yields

0 (@ — 28 XV.f) v = a(o, Dlhlr, ) — flr, %, 0142,
where

E(r, 1) 0
™ alry 1,0 = [V — 200 Dy4(r, 0,1

Let us seek a solution of (6) for f, of the form
(8) fulr, v, 1) = gy(r, v, 1) v,

where g, is isotropic in v.
Substitution of (8) into the r.h.s. of (6), yields

9y  gulr,v,1) fdwf q(v, %) sin yv[sin y cos i, + sin yx sin i, — (1 — cos y) &) dy
0 0

=-—g1("; ’I),t)‘ —12‘7

T m

(1) When writing v = (2nn — 1,)- v, it is intended that nn is a tensor product and
the dot, between the parenthesis-and v, indicated a « dot product » of tensors (see,
for instance [7]). The same conventions will be adopted in what follows.
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where a spherical coordinate system (v, ¥, 9) in the velocity space is taken,
with the polar axis in the direction of » = vi;, s0 that u = v(sin y cosyi,
-+ sin ¥ sin yi, -+ cos yis).

Thus, eq. (6) assumes the form

(10) [a—QIEXgI-F;Ug—;]-v:O-

me

Since the quantity in square brackets in (10) is a function of » which depends
only on v = |v], it must vanish, because (10) must hold for all directions of v.

Thus we obtain a solution for the isotropic vector g, (in terms of f,) by solv-
ing the vector equation

eB g

To this end, let us take, for a fixed r, a cartesian coordinate system (w,, 2,, @;)
with the »,-axis parallel to B. Then we easily obtain from (11)

Gi1= T Qg = W Ty g,
1,1 — — b
’ "1 weth
s+ W Ty

1= —7T 3
g2 m 1+0);'E'$n 2

G1,3= — T3,

where (g1, 01,2 J1,8) A0 (@y, Gy, @5) aTe the component of g, and e, respectively.
Equationg (12) can be written in the compaect form

(13) g&=—1.M-a,
where (b*= B/B)

(14) M= b*b* - o (L — b b¥) 4 o

—_ —22 b x|,
+ o, 14 otz

Taking account of (7), we finally have

¢E 0

(15) g1=——'rmM'[V——-m—v 5?—)]]‘0.
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Now we will prove that the difference between a general solution of (6) and gy-v
must be isotropic in v. Denoting by ¢ such a difference, it must satisfy the
equation

eB
(16) me XV, :,}‘Q(”y Wlelr, u, t) —@(r, v, )]de,
2
that is
op
(a7) wca—ﬁ .r q(v, Ylp(r, w, 1) — @(r, v, )] aQ .
o

This equation is completely analogous to eq. (3) for f, and, in the same way [1],
it can be seen that each ¢ must be isotropic in ». So we have that the most
general form of fy(r,v,7) is

(18) fo(ry v, 1) = gi(ry v, 1) v - fg(r7 2, 1),

where, therefore, g, and /) are an isotropic vector and an isotropie sealar func-
tion in the w-space, respectively.
If we now proceed to second order in «, eq. (1) yields

(19 To o9, 2 oV,
_ m 1 0 v 7aT of,
—é‘. q(v, )fory 1y 8) — fo(r, v, 1) )]dQ + = I 22 3o 'L‘ (fo mo av)]

Let us seek, in this cage, a solution of the form

(20) fz(ry v, 1) = gz(r7 v, t) :(v'v) ’

3

where g, is a symmetric tensor of rank 2, whose trace is zero (i.e. > Gu= 0)
k=1

and the symbol « . » indicates the double sealar product between g, and (vv)

(i.e. g.:( Z zg,gv ;) [7]. Then, from (19) and (20), we obtain, taking
i=1 j=1
account of (18},
0 E ¢B
(21) fo + v V() +giv em W2+ g1 v)——— X Vo(gs (v0))
ml 0 v kT Ofe
pj (0 %) sy 0, 8): (v — v0) AL 4 37 M v 9 'rm (fo + mo av)]
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It we develop both sides of (21) and take account, in particular, that

E K og, E
(22) = Vilgw) = (= i) 4 g,
B 2
(23) _:% X Vo(Gs: (vv)) = F;Bxggi(vv) ®,
(24) Qf‘l(% 1) Ge(r, v, 1) (e — o) dQ = —v,(v) g, (VD) ,
where
(25) v,(v) = [q(v, @)[1 — Py(cos x)1dL2 (3,
2

we can obtain an equation of the form
(26) P4 Qv+ R:(vv— tv2l) =0,

where P, Q, R are, respectively, a scalar, a vector and a 2-tensor expression,
which are isotropic in ». In particular we have,

_Ofy , v? ) eE v 0g m1l 0 v kT of,
(27) P=—atgVia—— (& EW)_ﬂEa—v[a(fo o 3
. ¢E og, 1 ) eE_agl 2¢
@) R=Ve—in 5 3 (Ve g ket BXGt g

As v/v is a unit vector whose components are the 1-order spherical harmonies
in the velocity space and, similarly, the components of vv/v:— (})I, are
2-order spherical harmonies [5], because of the orthogonality properties of the
spherical harmonics (we recall that 1 is the O-order spherical harmonic)
P, Q-v, R:(vv — v?L,/3) must be separately zero. So, taking account of (28),
we can write the expression of g, in terms of g, (see Appendix) and therefore,
by eq. (15), in terms of f,.

(*) Werecall that the «cross product » between a vector 4 and a tensor B is defined
by AxB = — E:(4B), where E is the Ricei 3-tensor, whose components H;;,. are 0
unless ¢ % j 5k and £ 1 for even/odd permutation of 4,7, k from the natural 1, 2, 3
order. This holds also -for eq. (14).

(®) Pyleos x) = (3) cos? y — (%) is the second-order Legendre polynomial in cos y.
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Now that we have found a solution of eq. (19) of the form (20), we can eagily
prove, in the same way we have followed for f,, that the difference between &
general solution of (15) for f, and ¢, (vv) must be isotropic in ». Denoting by
y(r, v, t) such a difference, it must satisfy the equation

¢eB
(29) me WXV, = IQ(vy 0ly(ry u, t) — y(r, v, 1)] aeQ,
2
or
(30) ﬁl‘ (v, Dy, uy t) — y(r, v, 1)]1d02 .

completely analogous to eqs. (3) and (17). So y is isotropic in » and we have
(31) folry v, 8) = @ulr, v, 1) (vv) + falry ,1) .

If we proceed in an analogous way for the higher order terms in the small
parameter o from eq. (1) (i.e. retaining, for each k>3, the k-order terms and
seeking for each f, of eq. (4) & solution of the form g, ;(v*), where g, is a k-order
completely symmetric tensor, (v*) is the k-times tensor product of v by itself
and «; »indicates the complete scalar product [7]), we can obtain the perturba-
tion solutmn of the Boltzmann equation (1), to the desired order of ap-
proximation.

3 - Basic equation for f; and conclusive remarks

In last section we have proved that f, and f, have, up to an isotropic fune-
tion in », the forms (8) and (20), respectively, and we can express both these
functions in terms of f,. Then it remains to obtain the_basic equation for f,.
If we take account of (27) and (15), we immediately have

of 1 eE 0. 3 'rm ¢E ©
(32) #ZB(V—%%) { M- (V— 771)8/0 ) fol
m1l 0 ?)3 ILT of,
+ 3 M 02 v 7:,,, (fo+ mo avﬂ

Note that eq. (32) coinecides with eq. (3-47) of [1], which, however, was obtained
in o different way. One can also see that, when neglecting diffusion prccesses,
eq. (32) yields to the well known Fokker-Planck equation (see, for in-
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stance [2], [4]). Some properties of eq. (82), together with the appropriate
boundary conditions to be required, can be found in ref.[1]. Now we only
want to point our remarks on what follows:

(2) under the assumptions (2), the classical method of solution of (1)
consisting in the expansion of f(r, »,?) in spherical harmonics, followed by a
truncation procedure, appears as a consequence of the expansion in the small
parameter o = +/m/I, without any a-priori evaluation of the order of the
coefficients in the spherical harmonics expansion;

(b) if we limit ourselves to considering only terms of order not higher than
the second in « (i.e. not higher than the first in the mass ratio m/M), the first
and second order coefficients in the spherical harmonies expansion can be
identified with the components of g, and g,, respectively (see also [5]);
thus the knowledge of f, allows us to obtain, in the above approximation, the
macroscopic quantities connected +with the first and second order moments
{e.g. drift velocity, pressure tensor);

(e) as regards the isotropic part of f, which coincides with f, to the zero
order, we may obtain, if necessary, the first, second, ete. order corrections by
solving equations that we can write extending to successive orders the proce-
dure followed in 2.

Appendix. Calculation of g, in terms of g,

As said in 2, we can obtain the espression of the tensor g, in terms of g, starting by
the equation

el 8g, 1 eE  og, 2e . v
(A1) [Vgr“%%;—g(v&“m 2 |2+;z—cB><gz+”zgz]-(m’“glz)—o-

Now, the quantity in square brackets in (Al) is isotropic in » and the components of
vufv? — 1,/3 are spherical harmonies of the second order in the v-space [5]. As known
(ef.[6], p. 256) for each natural number n, there are 2n - 1 spherical harmonics of or-
der n which arelinearly independent. Then, if we multiply successively both sides of (A1)
by each fundamental second-order spherical harmonic and integrate over the solid angle,
by the orthogonality properties of the spherical harmonics we obtain a system of five
linear algebrajc equations for the components g;; of g,, to which we must associate the
equation g;; + gs5 + gss= 0 (zero trace). Since we have supposed that g, is symmetric,
we have to solve a linear system of six equations in six variables. One may prove that
this system has a unique solution, since the determinant of the coefficient matrix is
not zero.
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To this end, let us take for a fixed r, as in 2, a carfesian coordinate system (z,, z,, ;)
with the z,-axis parallel to B. Then if we put

el og 1 ek og 2¢B
A —Vg— 228 _ligg 2 8y, 28
(A2) (Ve mv ov 3( 81 Mo av) I.] me
(A3) A=%(A+ A7), (A7,= A, for each i, )

(note that the trace of A and A is zero), we obtain the following linear system
(Ad)  wygye= Ay,  2vy95,-+ bsa= 2415, — Dg1g+ 20p00y = 244,
Volfis— Volay + 20010 = Ayy— App,  — bg13+ Dgoo+ 203010= 2415, Gi1t Goot Gss= 0.

The determinant of the coefficient matrix of (A4) has the value — 4v,(»2 - b2)(43 - b2),
so that it is always different from zero, since v, is always positive (see eq. (25)). Denoting
by A, the components of A, we easily obtain the following solution for the g;’s

(293 + b2) Ay + b2 Ao — 20w, Ay,

(A5) gll = 21)0(1)2 + ba) s
. b2 A5+ (202 + 1) A,y + 20w, A, Goy —ﬁ?
= 2w,(v2 -+ b?) T,
. _ b(Ay— ) + 20,45, . _ dvy Ay — 204,
J12= §o1 20 + %) s J13= g1 = _‘—““—'“""41}3 Tz

o 204, -+ dv, A,y
oz = J3o = b2 1 b .

Egs. (A5) can be given the following compact expression

2 A + bx A — (1/b2)[bX (A-b)1b — (1/2v,)(A:bb)l,
(A6) g, == 2+ b

N LI(A-b)-bI(bx1,) + 2{blbx (A-b)] + [bx (A-b)1b}
b2(d02 + b?)

N (3/2v,)(A:bb)bb + 3v,[(A-b)b + b(A-b)]
(v: + D2)(42 - B?) ’
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Sunto

81t discutono ¢ limiti di validita di aleuni metodi di solugione dell’ equazione di Bollzmann
per una nube di elettroni in moto in un gas di fondo, costituito di particelle monoatomiche,
sotto Dazione di un campo elettrico e di un campo magnetico.



