LAURA BERTANI (*)

P-nearsteiner-systems and Frobenius groups (**)

0 - Introduction

We recall (cfr. [2]₁) that a permutation group (X, G) is 2*-transitive if it is 2-transitive and for every $x, y \in X$ $(x \neq y)$ the stabilizer $G_{xy} \neq (1)$.

We also recall that by a *Frobenius group* G is meant a finite group with $G_x \neq (1)$ but $G_{xy} = (1)$ if $x \neq y$ (cfr. e.g. [4]).

In this paper we will show that, to any 3-transitive permutation group (X, Γ) and any subgroup D such that $\Gamma_{abc} \subset D \subset \Gamma_{ab}$ $(a, b, c \in X)$ we construct a geometric structure S which is obtained starting from the set X and an application f^0 mapping every triple of pairwise-distinct points into a point-set, called line. If $T \subseteq \Gamma$ is a group permutable with D and (X, T) is sharply 2-transitive, then G = TD is 2*-transitive, so that S = X(G) (where X(G) is the structure whose construction is obtained from the permutation group G (cfr. $[2]_1$, Theorem 6)). Moreover, from X(G) we find (according to André $[1]_1$), the group space $X_w(G_w)$ (where $X_w = X - \{w\}$ and G_w is the stabilizer of w).

We also obtain that the group G_w is an imprimitive Frobenius group of rank $\varrho \neq 3$.

1 - Preludes

We give some preliminary definitions (cfr. [2]₂).

^(*) Indirizzo: Dipartimento di Matematica, Università, via dell'Università 12, 43100 Parma, Italy.

^(**) Lavoro eseguito nell'ambito del G.N.S.A.G.A. (C.N.R.) e con fondi M.P.I. Ricevuto: 29-XI-1983.

Let X be a finite and not empty set, f an application $f: \Delta'(X) \to P(X)$ (where $\Delta'(X) = \{(x, y, z) \in X^3, x \neq y \neq z \neq x\}$).

Let
$$\mathscr{L} = \{ f(x, y, z) \mid (x, y, z) \in \Delta'(X) \}.$$

We call nearsteiner-system the structure (X, \mathcal{L}) such that

- (A1) $x, y, z \in f(x, y, z);$
- (A2) $w \in f(x, y, z) \{x, y\}$ iff f(x, y, z) = f(x, y, w);
- (A3) f(x, y, z) = f(x, z, y) = f(x, y, r) implies f(x, y, r) = f(x, r, y).

We call points the elements of X, line of base (x, y) each element f(x, y, z) of \mathscr{L} .

We have not necessarily f(x, y, z) = f(y, x, z).

Moreover, if $\|$ is an equivalence relation on \mathcal{L} , then we call nearsteiner-system with parallelism (P-nearsteiner-system) the structure $S = (X, \mathcal{L}, \|)$, where $S^0 = (X, \mathcal{L})$ is a nearsteiner-system and

(PO) for every $x, y \in X$ $(x \neq y)$ and for every $L' \in \mathcal{L}$, there exists one and only one line L parallel to L' and with base (x, y) (denoted by (x, y) || L').

Let now (X, G) be a 2*-transitive permutation group. Let $f: \Delta'(X) \to P(X)$ be an application which carries the triple (x, y, z) into the set $f(x, y, z) = \{x, y\}$ $\cup G_{xy}(z)$. Moreover, let us say two lines L, L' be parallel if there exists a $g \in G$ such that L' = g(L).

Then the structure $X(G) = (X, \mathcal{L}, \|)$ is a P-nearsteiner-system (cfr. $[2]_1$). In this case we have f(x, y, z) = f(x, z, y).

If G_{xy} is fixed-point-free (fpf) on $X - \{x, y\}$ (for all $x, y \in X, x \neq y$), then the lines are equipotent (cfr. [2]₁). We give the further

- Def. 1.1. A (3, q)-Steiner system with parallelism is a P-nearsteiner-system $(X, \mathcal{L}, \parallel)$ such that
 - (i) each line contains q points exactly;
- (ii) given the triple $(x, y, z) \in \Delta'(X)$ there exists one and only one line L which contains x, y, z.

Def. 1.2. The nearsteiner-systems $S^0 = (X, \mathcal{L})$ and $S^{0'} = (X', \mathcal{L}')$ are said to be *isomorphic* $(S^0 \cong S^{0'})$ if there exists a bijection $g: X \to X'$ such that (for $(x, y, z) \in \Delta'(X)$, $f': \Delta'(X') \to P(X')$)

$$(1.1) g(f(x, y, z)) = f'(g(x), g(y), g(z)).$$

Def. 1.3. The *P*-nearsteiner-systems $S=(X,\,\mathcal{L},\,\|)$ and $S'=(X',\,\mathcal{L}',\,\|')$ are said *isomorphic*, if there exists an isomorphism $g\colon (X,\,\mathcal{L})\to (X',\,\mathcal{L}')$ such that

(1.2)
$$L \parallel M \text{ iff } g(L) \parallel' g(M) \quad \text{for } L, M \in \mathcal{L}.$$

An isomorphism $g: S \to S$ is called an automorphism of S.

Def. 1.4. An automorphism j of S is a dilatation if

(1.3)
$$j(L) ||L|$$
 for every $L \in \mathcal{L}$.

Obviously the dilatations of S form a group J in the usual way. We write J = Dil(S).

An equivalence class of parallel lines is called a direction; we denote by R the set of all directions.

2 - Remarks on P-nearsteiner-systems

Let (X, Γ) be a 3-transitive permutation group, $(a, b, c) \in \Delta'(X)$, and D a not trivial group, with $\Gamma_{abc} \subset D \subset \Gamma_{ab}$.

We set

$$(2.1) f^0(a,b,c) = \{a,b\} \cup D(c) = \{a,b\} \cup \{d_1(c),\ldots,d_k(c)\}, (d_1,\ldots,d_k \in D).$$

As (X, Γ) is 3-transitive, given $x, y, z \in X$ pairwise distinct, there exists $j \in \Gamma$ such that

$$(2.2) j(a) = x, j(b) = y, j(c) = z.$$

We set

$$(2.3) f^{0}(x, y, z) = j(f^{0}(a, b, c)) = \{j(a), j(b)\} \cup \{jd_{1}(c), ..., jd_{k}(c)\}.$$

This point-set is well defined. In fact let $j' \in \Gamma$ with j'(a) = j(a) = x, j'(b) = j(b) = y, j'(c) = j(c) = z; then $j^{-1}j'(a) = a$, $j^{-1}j'(b) = b$, $j^{-1}j'(c) = c$, hence $j^{-1}j' \in \Gamma_{abc} \subset D$. But we have $j'(f^0(a, b, c)) = \{j'(a), j'(b)\} \cup \{j'd_1(c), ..., j'd_k(c)\}$, so that $j^{-1}j'(f^0(a, b, c)) = \{a, b\} \cup \{d'_1(c), ..., d'_k(c)\} = f^0(a, b, c)$.

We call *points* the elements of X, and *lines* the subsets of X defined by (2.1) and (2.3).

We can easily prove that

- (A1) $x, y, z \in f^0(x, y, z);$
- (A2) $w \in f^0(x, y, z) \{x, y\}$ iff $f^0(x, y, z) = f^0(x, y, w)$.

In this way we obtain a structure $\tilde{S}=(X,\,\tilde{\mathscr{Z}})=X(\varGamma,\,a,\,b,\,c,\,D)$ associated to $\varGamma,\,a,\,b,\,c,\,D$.

Remark 2.1. We have $\Gamma \subseteq \operatorname{Aut}(\tilde{S})$.

Let $g \in \Gamma$, then $g(f^0(x, y, z)) = gj(f^0(a, b, c)) = f^0(g(x), g(y), g(z))$, (where j(a) = x, j(b) = y, j(c) = z, and g(x) = gj(a), g(y) = gj(b), g(z) = gj(c)).

Theorem 2.2. Let (X, Γ) be a 3-transitive permutation group and T a subgroup of Γ sharply 2-transitive on X. Moreover let $a, b, c \in X$ pairwise-distinct and D a not trivial group such that

- (i) $\Gamma_{abc} \subset D \subset \Gamma_{ab}$,
- (ii) D is permutable with T.

Then G = TD is 2*-transitive on X and $X(G) = (X, \mathcal{L}, \|)$ is a P-near-steiner-system; moreover $\tilde{S} = (X, \mathcal{L})$.

Since D is permutable with T, we have that TD = DT = G is a group; moreover G is 2-transitive on X, because (X, T) is 2-transitive.

We have $D_{ab} = D \subseteq G_{ab}$; now we can prove that $G_{ab} \subseteq D$. In fact, if $g \in G_{ab}$, then g = td with $t \in T$, $d \in D = D_{ab}$; from a = g(a) = td(a), b = g(b) = td(b) follows $a = d(a) = t^{-1}(a)$, $b = d(b) = t^{-1}(b)$, so that $t^{-1} = 1$; therefore $g \in D$, hence $G_{ab} = D \neq (1)$. Since (X, G) is 2-transitive, the stabilizers G_{ab} and G_{xy} $(x \neq y)$ are equipotent, therefore (X, G) is 2*-transitive, then $X(G) = (X, \mathcal{L}, \|)$ is a P-nearsteiner-system (cfr. $[2]_1$).

Now we prove that $\Gamma = T\Gamma_{ab}$.

Let $g \in \Gamma$, we put g(a) = a' and g(b) = b'; for (X, T) is 2-transitive there exists $t \in T$ such that t(a) = a', t(b) = b'. Then g(a) = t(a), g(b) = t(b) and therefore $t^{-1}g(a) = a$ and $t^{-1}g(b) = b$. Hence $t^{-1}g \in \Gamma_{ab}$, then it is g = tj' (with $j' \in \Gamma_{ab}$). Therefore for every $g \in \Gamma$, we have g = tj' in one and only one way, because $T \cap \Gamma_{ab} = (1)$ (note that, if there exists $g \in \Gamma_{ab} \cap T$, then g(a) = a and g(b) = b; but $g \in T$, hence g = 1). Let $x, y, z \in X$, then there

exists $j \in \Gamma$ such that j(a) = x, j(b) = y, j(c) = z; then

$$\begin{split} f^{0}(x,\,y,\,z) &= j\big(f^{0}(a,\,b,\,c)\big) = t j^{0}\big(\{a,\,b\} \cup D(c)\big) = t j^{0}\big(\{a,\,b\} \cup G_{ab}(c)\big) \\ &= \{x,\,y\} \cup t j^{0}G_{ab}\big(j^{0-1}t^{-1}(z)\big) = \{x,\,y\} \cup G_{xy}(z) \end{split}$$

(where $tj^0 = j$). Therefore $f^0(x, y, z) \in \mathcal{L}$ and conversely, so that $\tilde{S} = (X, \mathcal{L})$.

3 - On a Frobenius group

At first we recall some definitions from Andrè (cfr. [1]₁). Let $S' = (X', f', \| ')$ be a structure consisting in a non-void point-set X', a mapping $f': X'^2 - \{(x, x)\}$ $x \in X' \rightarrow P(X')$ which carries the pair (x, y) $(x \neq y)$ into the set \overline{xy} (whose elements are called *lines*), and an equivalence relation \parallel' on the set $\mathscr{L}' = \{\overline{xy}\}$ $x, y \in X'$ and $x \neq y$ of all lines, called parallelism. We write $(X', \mathcal{L}', \| ')$ instead of $(X', f', \|')$.

Then the structure S' is called an LP-space if the following axioms hold:

- (L1) $x, y \in \overline{xy}$;
- (L2) $z \in \overline{xy} \{x\}$ implies $\overline{xy} = \overline{xz}$;
- (L3) $\overline{xy} = \overline{yx} = \overline{xr}$ implies $\overline{xr} = \overline{rx}$;
- (P1) for every $x \in X'$ and for every $l \in \mathcal{L}'$ there exists one and only one line l' with $x \in l' \parallel l$, (which we denote by $\{x\} \parallel l$);
- (P2) every line parallel to a straight line (which is a line $\overline{xy} = \overline{yx}$) is a straight line;
 - (P3) from $\overline{xy} \parallel' \overline{x'y'}$ follows $\overline{yx} \parallel' \overline{y'x'}$.

Let (X', G') be a transitive permutation group; if $x, y \in X'$ $(x \neq y)$, we set $\overline{xy} = \{x\} \cup G'_x(y)$; we obtain the structure $X'_{g'}$ (cfr. [1]₁). Moreover (cfr. [1]₁, Definition 2.6), the transitive permutation group (X', G') is normally transitive if it satisfies one of the following conditions:

- (a) every line of $X'_{\sigma'}$ contains at least three points;
- (b) $N(G'_x) = G'_x$, for every $x \in X'$; (c) if $x \neq y$, then $G'_x \neq G'_y$.

Now, let (X, G) be a 2*-transitive permutation group, then the structure $X(G) = (X, \mathcal{L}, \parallel)$ is a P-nearsteiner-system. Let, moreover, $N(G_{xy}) = G_{xy}$ (for all $x, y \in X$, $x \neq y$; then every line of X(G) has at least four points (cfr. [2]₁, Remark 2). Let f(x, y, z) = f(x, z, y) (for $(x, y, z) \in \Delta'(X)$).

From X(G) we derive a new incidence structure (for every $w \in X$) $(X_w, \mathscr{L}_w, \|_w)$, where $X_w = X - \{w\}$, $\mathscr{L}_w = \{l' \mid l' \cup \{w\} = f(w, x, y) \in \mathscr{L}\}$. More exactly $l' \in \mathscr{L}_w$ iff

$$l' \cup \{w\} = f(w, x, y) = \{w, x\} \cup G_{wx}(y) = \{w\} \cup \{x\} \cup G'_{x}(y)$$

(with $G' = G_w$). Hence $l' = \{x\} \cup G'_x(y) = \overline{xy}$.

If $l, l' \in \mathcal{L}_w$, we call (cfr. [1]₁), $l \parallel_w l'$ iff there exists a $g \in G'$ such that l' = g(l). We know (cfr. [1]₁) that \parallel_w is an equivalence relation on \mathcal{L}_w . Then we have the following

Remark 3.1. The structure $(X_w, \mathscr{L}_w, ||_w)$ is an LP-space.

Since (X, G) is 2*-transitive (hence 2-transitive), (X_w, G_w) is transitive, moreover it is normally transitive, because $N(G_{xy}) = G_{xy}$ and so every line of \mathscr{L}_w has at least three points; we have (cfr. [1]₁, Satz 4.2) that $(X_w, \mathscr{L}_w, \|_w)$ is an LP-space.

We can easily prove that if $l|_w l'$, then $l \cup \{w\} || l' \cup \{w\}$.

In fact, let $l = \overline{xy}$ and $l' = \overline{x'y'}$; if $l \parallel_w l'$ there exists $g \in G_w$ such that g(l) = l', that is $g(\overline{xy}) = g(\{x\} \cup G'_x(y)) = \{x'\} \cup G'_{x'}(y')$.

Then we have $l \cup \{w\} = \{x, w\} \cup G_{xw}(y)$ and $l' \cup \{w\} = \{x', w\} \cup G_{wx'}(y')$ = $g(l \cup \{w\})$. Then $l \cup \{w\} | l' \cup \{w\}$.

Viceversa, if L = f(w, x, y) and L' = f(w, x', y') are parallel in X(G), we can find in the set $\{g \in G | g(L) = L'\}$ an element of G_w . In fact, given $x, x' \in X'$, there exists a $g \in G_w$ such that g(x) = x' (because (X_w, G_w) is transitive). Therefore g(L) = f(w, x', g(y)) is a line parallel to L and with base (w, x') then (by P0) g(L) = L'. Hence the lines $l = L - \{w\} = \{x\} \cup G'_x(y)$ and $l' = L' - \{w\} = \{x'\} \cup G'_{x'}(y') = \overline{g(x)g(y)}$ are $\|_w$ (where $G' = G_w$). Then $l\|_w l'$ iff $l \cup \{w\}\| l' \cup \{w\}$.

Theorem 3.2. Let $S = (X, \mathcal{L}, \|)$ be a (3, q)-Steiner system with parallelism. Let G = Dil (S) such that, for every $r \in R$, (r, G) is a transitive permutation group (1), and let $u, v \in X$ ($u \neq v$) such that $G_{uv} \neq (1)$; then (for $w \in X$) $(X - \{w\}, G_w)$ is an imprimitive Frobenius group.

⁽¹⁾ G is here considered as a permutation group on the lines belonging to r, induced by (X, G).

In fact, under the above conditions we have S = X(G) (cfr. [2]₂, Theorem 2.3); moreover G_w is a Frobenius group on $X - \{w\}$ (cfr. [2]₁, Remark 7), then the structure $(X_w, \mathcal{L}_w, \|_w)$ is an LP-space (cfr. [1]₂); moreover the elements of \mathcal{L}_w are equipotent (cfr. [1]₂, Satz 3.2), therefore G_w is imprimitive (cfr. [1]₂, Satz 3.4). We give the following

Def. 3.1. By an incidence structure with parallelism (P-incidence structure) of kind t, is meant a triple $(X, \mathcal{L}, \|)$, where X is a finite and not empty set of elements (called points), \mathcal{L} is a system of subsets of X (called lines) such that $\forall x_1, \ldots, x_{t+1} \in X$ (pairwise-distinct) there exists at least an element $f(x_1, \ldots, x_{t+1})$ of \mathcal{L} incident with them; and $\|$ an equivalence relation on \mathcal{L} such that

(P4) $\forall x_1, ..., x_t \in X$ (pairwise-distinct) and for every $l \in \mathcal{L}$, there is exactly a line l' parallel to l and incident with the given points. It will be denoted by $\{x_1, ..., x_t\} \| l$.

Clearly a P-nearsteiner-system (and hence a (3, q)-Steiner system with parallelism) is a P-incidence structure of kind 2, and an LP-space is a P-incidence structure of kind 1.

Def. 3.2. A subspace of a P-incidence structure of kind t $(X, \mathcal{L}, \parallel)$ is a subset U of X such that

- (1) if $x_1, ..., x_{t+1} \in U$ (pairwise-distinct), then $f(x_1, ..., x_{t+1}) \subseteq U$;
- (2) $\forall x_1, ..., x_t \in U$ (pairwise-distinct) and for every line $l \subseteq U$, $l' = \{x_1, ..., x_t\} | l \subseteq U$.

For t = 1, 2 we find again the Definition 6.2 of $[\mathbf{1}]_1$, and Definition 3.1 of $[\mathbf{2}]_2$ respectively.

Therefore, if U is a subspace of the P-incidence structure $(X, \mathcal{L}, \parallel)$, $(U, \mathcal{L}_{\sigma}, \parallel_{\sigma})$ is a subsystem of $(X, \mathcal{L}, \parallel)$, where $\mathcal{L}_{\sigma} = \mathcal{L} \cap P(U)$, and \parallel_{σ} is the equivalence relation induced on \mathcal{L}_{σ} by \parallel .

From now on let $S = (X, \mathcal{L}, \parallel)$ be a (3, q)-Steiner system with parallelism, and let G = Dil(S) such that, for every $r \in R$, (r, G) is a transitive permutation group, and $G_{uv} \neq (1)$ (for some $u, v \in X$, with $u \neq v$).

Let $w \in X$ and let U_k be a subspace of S containing w; let $X_w = X - \{w\}$ and $U'_x = U_k \cap X_w$. Then we can prove the following

Theorem 3.3. The set U'_x is a block of imprimitivity of G_w .

In fact, if $U_k = \{w\}$, then $U'_k = \emptyset$ and \emptyset is a block of imprimitivity of G_w ; if $U_k = \{w, x\}$, then $U'_k = \{x\}$ and $\{x\}$ is a block of imprimitivity of G_w .

Otherwise, let $x, y \in U'_k$ $(x \neq y)$, then $f(w, x, y) \subseteq U_k$ and $\overline{xy} \subseteq X_w$, hence $\overline{xy} \subseteq U'_k$. Moreover, let $x, l \subseteq U'_k$ with $l = \overline{ab} = \{a\} \cup G_{aw}(b)$; then $l \cup \{w\} = L$ $= \{a, w\} \cup G_{aw}(b)$ is contained in U_k , hence $L' = \{x, w\} \| L \subseteq U_k$, then we have L' = g(L) (with $g \in G_w$); so $l' = g(L) - \{w\} \|_w l$ and $l' \subseteq X_w \cap U_k$.

Then U_k' is a subspace of $S' = (X_w, \mathcal{L}_w, \|w)$, hence it is a block of imprimitivity of G_w (cfr. [1]₁, Satz 6.3).

Besides we have (cfr. [5]) that X_w is the union of the members of a complete block system of G_w : $I = \{U'_k\}$.

Remark 3.4. If $U_h' \in I$, then there exists a subspace U_h of S, such that $U_h' = U_h \cap X_w$.

Let $U_h' \in I$ and U_k be a subspace of S containing w, then (cfr. [5]) the blocks U_h' and U_k' (with $U_k' = U_k \cap X_w$) are conjugate, hence there is a $g \in G_w$ such that $g(U_k') = U_h'$; that is $U_h' = g(X_w \cap U_k) = X_w \cap g(U_k)$.

As U_k is a subspace of S and $g \in G_w \subseteq G$, $g(U_k)$ is also a subspace of S (cfr. [2]₂, Remark 3.1); moreover $w \in g(U_k)$; hence it is $U'_h = X_w \cap U_h$ (where $U_h = g(U_k)$).

We have finally the following

Theorem 3.5. Let G be the dilatation group of the (3, q)-Steiner system with parallelism $S = (X, \mathcal{L}, \parallel)$ such that, for every $r \in R$, (r, G) is a transitive permutation group; and let $u, v \in X$ ($u \neq v$) such that $G_{uv} \neq (1)$. Then, for $w \in X$, (X_w, G_w) is an imprimitive Frobenius group of rank $\varrho \neq 3$.

We known (cfr. Theorem 3.2) that (X_w, G_w) is an imprimitive Frobenius group. Let us suppose that $G' = G_w$ have rank 3; then, for every $a \in X_w$, G'_a has exactly three orbits $\{a\}$, $\Delta(a)$, Y(a). We set $k = |\Delta(a)|$, l = |Y(a)|, so we have $|X_w| = m = 1 + k + l$. In this case we have k = l = q - 2, and (cfr. [3], Lemma 4) the systems of imprimitivity of G' are the sets $\{a\} \cup \Delta(a)$ and hence k < l. But this is impossible, so that $\rho \neq 3$.

References

[1] J. André: [•]₁ Über geometrische Strukturen, die zu Permutationsgruppen gehören, Abh. Math. Sem. Univ. Hamburg 44 (1976), 203-221; [•]₂ Zur Geometrie der Frobeniusgruppen, Mat. Z. 154 (1977), 159-168.

P-NEARSTEINER-SYSTEMS	4 3 7 3 3	TT 0 TT TTT 0	an ortho	
P-NEARSTEINER-SYSTEMS	AND	FROBENIUS	GROHPS	

381

- [2] L. BERTANI: [•]₁ On some incidence structures, J. Geom. 15/2 (1980), 158-169; [•]₂ On (3, q)-Steiner systems with parallelism, stampato in proprio, settembre 1982.
- [3] D. G. HIGMAN, Finite permutation groups of rank 3, Math. Z. 86 (1964), 145-156.
- [4] D. S. Passman, Permutation groups, Benjamin, Inc., New York 1968.

[9]

[5] H. Wielandt, Finite permutation groups, Academic Press, New York 1964.

Riassunto

In questo articolo costruiamo particolari strutture geometriche « P-nearsteiner-systems » a partire da un gruppo di permutazioni 3-transitivo. Come casi particolari otteniamo le strutture di incidenza di $[2]_1$.

* * *