S. ZAIDMAN (*)

A non-linear abstract differential equation with almost-periodic solution (**)

Introduction

In this paper we complete Theorem 1.1 (Chapter 10) of [3] to a simple quasilinear situation, considering mild instead of regular solutions.

1 – Let X be a Banach space, and S(t), $t \ge 0 \to \mathcal{L}(X)$ be a Co-operator semi-group, verifying an estimate $||S(t)|| \le M \exp[\beta t] \ \forall t \ge 0$, where β is a negative number. Let also A be its infinitesimal generator.

Next consider a function f(x, t), $X \times \mathbb{R} \to X$, which is continuous with respect to t for any $x \in X$, and verifies an uniform Lipschitz condition

$$||f(x_1, t) - f(x_2, t)|| \le N ||x_1 - x_2||$$
 $\forall x_1, x_2 \in X$, $\forall t \in \mathbf{R}$.

Remark that as a consequence, the function $f(\varphi(t), t)$, $R \to X$ is (strongly) continuous, if $\varphi(t)$, $R \to X$ is continuous.

We give the following

Def. The continuous function u(t), $\mathbf{R} \to X$, is a mild solution over \mathbf{R} of the differential equation

(1)
$$u'(t) = Au(t) + f(u(t), t)$$
,

^(*) Indirizzo: Dépt. de Mathématiques et de Statistique, C.P. 6128, Succursale « A », Montréal, Québec, H3C 3J7, Canada.

^(**) This research is supported by a grant of the Natural Sciences and Engineering Research Council Canada. — Ricevuto: 19-IX-1983.

[2]

if the functional relation

(2)
$$u(t) = S_{t-a}u(a) + \int_{a}^{t} S_{t-\sigma}f(u(\sigma), \sigma) d\sigma$$

is satisfied $\forall a \in \mathbf{R}, \ \forall t \geqslant a$.

Our aim here is to establish the following

Theorem. Let us assume that the continuous function f(x,t), $X \times \mathbf{R} \to X$ is almost-periodic in t, uniformly for x in compact subsets of X (1), and has a sufficiently small Lipschitz constant. Then there exists one and only one almost-periodic mild solution over \mathbf{R} , u(t), of the differential equation (1).

2 – We need a preliminary Lemma before we shall be able to apply the contraction mapping principle.

Lemma. Given any almost-periodic function g(t), $\mathbf{R} \to X$, there exists one and only one almost-periodic function v(t), verifying the relation

(3)
$$\nu(t) = S_{t-a} \nu(a) + \int_{a}^{t} S_{t-\sigma} g(\sigma) d\sigma \qquad \forall a \in \mathbf{R}, \quad \forall t \geqslant a.$$

The uniqueness follows in the following way. If $\omega(t)$, $\mathbf{R} \to X$ is a bounded over \mathbf{R} mild solution of v' = Av (that is $\omega(t) = S_{t-a}\omega(a)$, $\forall a \in \mathbf{R}, t \geqslant a$), then $\omega(t) = \theta$ $\forall t \in \mathbf{R}$. In fact, take a sequence of real numbers $t_n \downarrow -\infty$. For a given $t \in \mathbf{R}$ we have $\omega(t) = S_{t-t_n}\omega(t_n)$ (as soon as $t_n < t$). Hence

$$\|\omega(t)\|\leqslant M\sup_{t\in \mathbf{R}}\|\omega(t)\|\exp\left[\beta(t-t_n)\right]\to 0\qquad\text{as }n\to\infty\quad\text{and }\omega(t)=\theta\;.$$

The existence of the almost-periodic mild solution. Consider (as in [3]) the function v(t) defined by the (improper) integral

$$v(t) = \lim_{n \downarrow -\infty} \int\limits_{n}^{t} S(t-\sigma) g(\sigma) \, \mathrm{d}\sigma \, .$$

⁽¹⁾ This means that, if K is any compact in X, then, $\forall \varepsilon > 0$, the set $\bigcap_{x \in K} J(\varepsilon, f(x, t))$ is relatively dense on R (as in [2], p. 7).

It is proved in [3] (pp. 123-124) that v(t) is a continuous almost-periodic function, $\mathbf{R} \to X$, verifying the estimate

$$\|\nu(t)\| \leqslant \frac{M}{|\beta|} \sup_{\sigma \in R} \|g(\sigma)\| \qquad t \in R.$$

Hence, it remains to show that $\nu(t)$ is a mild solution over R. Take therefore any $a \in R$ and $t \geqslant a$. From

$$v(t) = \int_{-\infty}^{t} S(t - \sigma)g(\sigma) d\sigma \text{ we derive that } v(a) = \int_{-\infty}^{a} S(a - \sigma)g(\sigma) d\sigma$$

which implies that $S(t-a)\nu(a) = \int_{-\infty}^a S(t-\sigma)g(\sigma)\,\mathrm{d}\sigma$ and accordingly

$$S(t-a)\nu(a) + \int_a^t S(t-\sigma)g(\sigma) d\sigma = \int_{-\infty}^t S(t-\sigma)g(\sigma) = \nu(t).$$

Thus the Lemma is established.

Proof of the theorem. From our hypothesis it follows (see Appendix), that $\forall \varphi(t)$ which is almost-periodic, $\mathbf{R} \to X$, the composite function $f(\varphi(t), t)$ has the same property. It makes therefore sense to consider the mapping from the (Banach) space AP(X) (of almost-periodic functions, $\mathbf{R} \to X$ endowed with the uniform norm over \mathbf{R}) into itself defined as follows: $\varphi \in AP(X) \to T\varphi = u$ which is the unique mild almost-periodic solution over \mathbf{R} of the above considered differential equation $u' = Au + f(\varphi(t), t)$. We show now that T is a strict contraction on AP(X) (when the Lipschitz constant N is small enough).

Therefore, take $\varphi_1, \varphi_2 \in AP(X)$ and let $u_i = T\varphi_i, i = 1, 2$, so that

$$u_i(t) = \int_{-\infty}^{t} S(t-\sigma) f(\varphi_i(\sigma), \sigma) d\sigma \quad (i = 1, 2).$$

We get $u_1(t) - u_2(t) = \int_{-\infty}^{t} S(t - \sigma) [f(\varphi_1(\sigma), \sigma) - f(\varphi_2(\sigma), \sigma)] d\sigma$ and

$$\begin{split} \|u_1(t) - u_2(t)\| & \leqslant \int\limits_{-\infty}^t \|S(t - \sigma)\|_{\mathscr{L}(\mathbf{X})} N \|\varphi_1(\sigma) - \varphi_2(\sigma)\| \, \mathrm{d}\sigma \\ & \leqslant M \cdot N \big(\int\limits_{-\infty}^t \exp\left[\beta(t - \sigma) \, \mathrm{d}\sigma \big) - \sup_{\sigma \in \mathbf{R}} \|\varphi_1(\sigma) - \varphi_2(\sigma)\| \, ; \end{split}$$

therefore

$$\|T\varphi_1 - T\varphi_2\|_{AP(\mathbf{X})} \leqslant \frac{M \cdot N}{|\beta|} \|\varphi_1 - \varphi_2\|_{AP(\mathbf{X})},$$

which is a strict contraction when $N < |\beta|/M$.

Let $u(t) \in AP(X)$ be a fixed point of T; therefore

$$u(t) = \int_{-\infty}^{t} S(t-\sigma) f(u(\sigma), \sigma) d\sigma, \quad \text{then} \quad u(a) = \int_{-\infty}^{a} S(a-\sigma) f(u(\sigma), \sigma) d\sigma,$$

and for $t \ge a$

$$S(t-a)u(a) + \int_{a}^{t} S(t-\sigma)f(u(\sigma), \sigma) d\sigma$$

$$= \int_{-\infty}^{a} S(t-\sigma)f(u(\sigma), \sigma) d\sigma + \int_{a}^{t} S(t-\sigma)f(u(\sigma), \sigma) d\sigma = \int_{-\infty}^{t} S(t-\sigma)f(u(\sigma), \sigma) d\sigma,$$

which means that u(t) is a mild solution (almost-periodic).

It only remains to prove the following (compare [1], Theorem 2.10 and Theorem 2.11).

Appendix. Let the continuous function f(x,t), $X \times \mathbf{R} \to X$, be almost-periodic, $\mathbf{R} \to X$, $\forall x \in X$, and uniformly for $x \in K$ -any compact subset of X. Then, if $\varphi(t) \in AP(X)$, the composite function $f(\varphi(t), t)$, $\mathbf{R} \to X$ is also almost-periodic.

Proof. If K is any compact set in X, the family of almost-periodic functions $\{f(x,t)\}_{x\in K}$ is a relatively compact family in $C_b(R;X)$ -space of continuous bounded functions over R. This follows from Lyusternik's theorem ([2], p. 7) in the following way:

- (i) Fix $t_0 \in \mathbf{R}$; the set $\{f(x, t_0)\}_{x \in \mathbf{K}}$ is the continuous image in X of the compact set K, hence it is compact in X.
 - (ii) The set $\{f(x,t)\}_{x\in K}$ is uniformly almost-periodic, by assumption.
- (iii) The set $\{f(x,t)\}_{x\in\mathbb{K}}$ is equi-uniformly continuous over R, that is $\|f(x,t')-f(x,t'')\|_{\mathbf{X}}<\varepsilon$ if $|t'-t''|<\delta_{K}(\varepsilon)$, $\forall x\in K$.

In fact, from (ii) it follows that f(x,t) is uniformly continuous with respect to x on K, uniformly on R, which is now proved: f is uniformly continuous on $K \times [0, L]$, $\forall L > 0$. We know that $\bigcap_{x \in K} J(\varepsilon/9, f(x,t)) = T$ is relatively dense. Let L be an inclusion length. Given $t \in R$, $\exists \zeta \in [-t, -t + L] \cap T$, so that $0 \leqslant t + \zeta \leqslant L$. Next, $\exists \delta > 0$, so that $x, y \in K$ and $\|x - y\| < \delta \Rightarrow \|f(x, t) - f(y, t)\| < \varepsilon/9$ for $0 \leqslant t \leqslant L$. Then, for any $t \in R$, and $x, y \in K$, $\|x - y\| < \delta$, we obtain

$$\begin{split} \|f(x,t)-f(y,t)\| &< \|f(x,t)-f(x,t+\zeta)\| \,+\, \|f(x,t+\zeta)-f(y,t+\zeta)\| \\ &+\, \|f(y,t+\zeta)-f(y,t)\| < \varepsilon/3 \ . \end{split}$$

Now, by compactness of K, \exists a finite subset $\{x_1, x_2, ..., x_n\} \in K$, such that, $\forall y \in K$, $\|y - x_i\| < \delta$ for some i. The finite family of almost-periodic-hence uniformly continuous over \mathbf{R} -functions, $\{f(x_1, t), ..., f(x_n, t)\}$ is obviously equiuniformly continuous so that $\exists \varrho(\varepsilon/3)$ with property

$$|t'-t''|<\varrho=>\|f(x_i,t')-f(x_i,t'')\|<rac{\varepsilon}{3} \quad \forall i=1,2,...,n$$
 .

Given now $y \in K$, take x_i so that $||x_i - y|| < \delta$. It follows, for $|t' - t''| < \varrho(\varepsilon/3)$, the inequality

$$\begin{split} \|f(y,t') - f(y,t'')\| &< \|f(y,t') - f(x_i,t')\| + \|f(x_i,t') - f(x_i,t'')\| \\ &+ \|f(x_i,t'') - f(y,t'')\| < \varepsilon \,. \end{split}$$

Thus, the family $\{f(x,t)\}_{x\in K}$ is relatively compact in $C_b(R;X)$. If now φ is almost-periodic, $R\to X$, the closure of its range, $K=\overline{\mathrm{Ran}\,\varphi}$ is a compact set in X so that the family of functions $\{f(x,t)\}_{x\in K}$ is relatively compact in $C_b(R;X)$. Adding one element (the function $\varphi(t)$) maintains relative compactness of the family of almost-periodic functions, $R\to X$, $\{f(x,t)\}_{x\in\overline{\mathrm{Ran}\,\varphi}}\cup\{\varphi(t)\}$. Applying again Lyusternik's theorem we find that the set of ε' common almost-periods $T_1=\bigcap_{x\in K}J(\varepsilon',f(x,t))\cap J(\varepsilon',\varphi)$ is relatively dense on the real line. Now, as was proved above, given $\varepsilon>0$, there exists $\delta>0$ such that $x,y\in\overline{\mathrm{Ran}\,\varphi}$ and $\|x-y\|<\delta$ implies $\|f(x,t)-f(y,t)\|<\varepsilon/3$ $\forall t\in R$. If we now take $\varepsilon'=\inf(\varepsilon/3,\delta)$ we can find a $\zeta\in\bigcap_{x\in K}J(\varepsilon/3,f(x,t))\cap J(\delta,\varphi)$ in any interval of length $L_{\varepsilon'}$ on the real line. For any such ζ it is

$$\begin{split} \|f(\varphi(t+\zeta),t+\zeta)-f(\varphi(t),t)\| \leqslant \|f(\varphi(t+\zeta),t+\zeta)-f(\varphi(t),t+\zeta)\| \\ &+\|f(\varphi(t),t+\zeta)-f(\varphi(t),t)\| \leqslant \frac{\varepsilon}{3}+\frac{\varepsilon}{3} < \varepsilon\,, \end{split}$$

because $\|\varphi(t+\zeta) - \varphi(t)\| < \delta \ \forall t \in \mathbf{R}$.

This proves the almost-periodicity of the composite function $f(\varphi(t), t)$.

References

[1] A. M. Fink, Almost periodic differential equations, Springer-Verlag, Berlin-Heidelberg-New York 1974.

- [2] B. M. Levitan and V. V. Zhikov, Almost periodic functions and differential equations, Cambridge University Press, Cambridge, London, New York 1982.
- [3] S. Zaidman, Abstract differential equations, Pitman Publishing, San Francisco-London-Melbourne 1979.

* * *