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An existence analysis

for a multipoint boundary value problem

via the alternative method (*%)

Introduction

Boundary value problems (BVP) of various types are some of the major
areas of study in the theory of differential equations. There are many physical
and engineering problems where multipoint boundary value problems (MPBVP)
arise. The vibrating beam problems with point loadings [8] and the difference
schemes in numerical analysis [10] are some of them. The present paper is a
contribution in this direction concerning MPBVE.

In series of papers, Cesari[l],,, Locker[7],, and Hale[6] developed a
process based on functional analysis, for the solution of operational equationsg
of the form Ly = Nz, L a linear possibly unbounded operator, N a continuous
possibly nonlinear operator, which was denoted in [6] as the alternative methad.
This proeess was applied by many authors to the solution of nonlinear BVP,
both for selfadjoint and nonselfadjoint cases. We only mention here Knobloch,
Locker, Osborn and Sather, Landesman and Lazer, Hale, Williams, Mawhin,
Kannan. We refer to [1]; for references to many of the results in this direction.

Locker studied in detail, in [7]; ,, the ease of L a nonselfadjoint linear or-,
dinary differential operator on an interval [, d] with boundary conditions
at @ and b, and ¥ a Nemytskii operator not involving derivatives.

In this paper, following Cesari [1], , and Locker [7], , we develop an alterna-
tive method for the existence analysis of MPBVP for an n-th order differential

(*) Indirizzo: Department of Mathematies, Indian Institute of Technology, Kanpur
India. : o
(**) Ricevuto: 15-X1I1-1982.
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equation. We assume here the boundary conditions arelinear and homogeneous,
while we allow the nonlinear part to contain derivatives up to and including
the derivatives of order n — 1 of the unknown function. Finally, & numerical
problem is indicated, and elsewhere we shall show, by applying the theory,
that the problem has indeed a solution.

In a previous paper [3]; we reelaborated the work of Cesari and Locker for
nonlinear ordinary differential equations with linear boundary conditions.
In another paper [3]; we shall extend the present work for nonlinear ocrdinary
differential equations with multipoint nonlinear conditions.

1 - Notations

In this section, we provide the specific notations used throughout the text.

Here J stands for a closed interval [a, b] on the real line with b > «a, §;; de-
notes the Kronecker delta of ¢ and §, D(T), N(T), R(T) denote the domain,
the null space and the range of the operator T, respectively. Also,
{wyy Wy ..y 0,y stands for the linear space spanned by w;, w,, ..., 0,, and
T\ E denotes the restriction of the operator T' to the set I. Finally, x, denotes
the characteristic function of # and R» stands for the n-dimensional real space
with Buclidean norm |- |.

We shall denote by &™), or x™(-), the n-th derivative of the real-valued
funetion @ or x(-), by «(t + 0), »(t — 0) the right-hand and left-hand limits
of » at the point ¢, respectively, and by C»(J) the linear space of all n-times
continnously differentiable real-valued functions on J. By the Banach space
O»(J) we mean the linear space O*(J) equipped with the norm |- |, given by

[@].= max sup |a9()] wve OJ).
$=0,1,2,.5n  1EJ

Moreover, C(J) stands for the linear space of all infinitely differentiable real-
valued functions on J and § stands for L,(J), the Hilbert space of all square-
integral real-valued funetions on J with the usual inner product and norm de-
noted by (...) and ||+ ||, respectively. Also, I denotes the identity operator on S,
B+ denotes the orthogonal component of F in 8, where I is a linear subspace
of S. Finally, B+ F denotes the direct sum of the subsets B and I of S. For
n>1, the set H*(J) is defined by

H(J) = {we O(J): a0 is absolutely continuous on J and z® e §}.
We take Hy(J) = 8. By the Banach space H»(J) we mean the linear space
H»(J) equipped with the norm given by k '

n—1

o)l = Vb —a (Y sup |a9@)]) + |a»]  weHJ), n>0.

=0 teJ
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The subspace H(J) and H#(J) ave defined by

Hi(J) = {w e H*(J): « and all its derivatives up to and including the
order n — 1 vanish at both end points a and b} n>=1;
Hn(J) = {w e HMJ): ™ is essentially bounded} n>=0.

The norm g on Hn1(J) is defined by

w(w) = max ( max sup |a?(t)], ess. sup [2m1(¢) ) we Ho-0(J), n>1.
i=0,1,..,n—2 {E€J

2 - Formulation of the problem and general assumptions

A sufficiently general MPBVP for an n-th order nonlinear differential equa-
tion is of the following form

(2.1) T == pn(t) da;n/dtn + pn"l(t) dn—-lw/dtn_l + . _[_ po(t)(x;
= X(t, @, 2", ..., gin-D)

n=—1

(2.2)  Bj(@) = 3 (c0;:@(a) + 0;:89(ag) + ... + 0, @0(D)) =0,

=0

where a = @, <a; <0 <. <@ <=0, §=1,2,...,k Fk<n

The following conditions are assumed to be valid throughout the present
paper.
(i) Bach coefficient function p,€ C°(J), i = 0,1, ..., 1, and p,(¢)5£0 on J.
(ii) The nonlinear function X(¢, 2y, @y, ..., #,—,) is defined for teJ and
|e;| <R;, i =0,1,...,n — 1, where each E,> 0.
(i) X(., @y, ..., To—y) € 8 for each fixed (w,, ..., 2,~,) satisfying |z;| <R,
1=10,1,..,n—1
(iv) There exists a real number k>0 such that for |z;|<R;, |y:| <R,
we have

n—1

(2.3) |X(t7 z, mn"'ya}n—l)”‘“X(t) yo7?/1a'°-7'3/n—1)l<ko(z lmi_yil) ted.

=0

(V) gsi5 Cyjiy oee, Onse Ave real constants such that B; are linearly inde-
pendent.
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In 3 we shall denote by L the linecr operator T when we asscceiate to it the k
linear conditions (2.2). In 3 we shall denote by N the Nemytskii operator
defined by N = X(t, (1), 20(1), ..., 2D(1)), so that problem (2.1), (2.2) in 8
will take the operational form La = Nz,

3 - Definitions and elementary properties of I and H

For the formal differential operator v under assumptions (ii) and the set
of & linearly independent boundary econditions B;s, the differential operator
L: D(L)yc § - B(L)c 8 is defined as follows

DLy = {we H*J): By(w) = 0,§ =1,2,..., k}, Le=r1x.

The operator L has the following properties:

(i) D(L) is dense in S.
(ii) L is a closed linear operator.
(iti) R(L) is cloged in 8.
(iv) 8 = R(L)-+ N(L*) where L* denotes the adjoint of L.
(v) dim N(L) = p << co and dim N(L*) = ¢ < oo.

Infact, g<p<n and p —q¢=n—FL.

Proofs of (i), (ii) and (iii) are analogous to the proof of Lemma 7 of
Schwartz [9], proof of (iv) is clear, and the proof of (v) follows the lines of
Theorem 3.4 Chapter 11 of Coddingtion and Levingon [2], when one makes
use of the variant of the Green’s formula for multipoint BVP as given in
Wilder [11].

We know that the null space of 7 is n-dimensional, and that N (L) c N(z).
Let us choege functions ¢y, @,, ..., ¢, € 0°(J) n solutions of the formal dif-
ferential operator v, so that ¢, ..., ¢, form an orthonormal basis for N(IL).
We also choose elements w,, w,, ..., 0, € D(L*) to form an orthonormal basis
for N(L*).

We note that the operator L|D(L) N N(L)* is a one-to-one closed linear
operctor having the same range as L. Let H denote the inverse of this operator

(3.2)  H=(L|D(I) N NIy,

By the closed Graph Theorem, H is a one-to-one continuous linear operator.
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Cleary, D(H) = B(L) and R(H) = D(L) N N(L)*. Morcover,

(3.3) LHy =y for all y e R(L),
P

(3.4) HLe =o— 3 (z,0,)p, for all ze D(L).
i=]1

Thus H is a continuous right inverse of L.

4 - Projections P,,, @, and their relations with' L and H

We agsume that there exist elements Wat1y Dghgy «o-y Opy ».. belonging to
D(L*) such that the sequence of functions Wiy ey Wy Ogtgy Dgtoy vrey Dyy oo
form a complete orthonormal set in §. Since 8 = R(L) N, (L*), the elements
WOqiyy Doty ooey Oy -.. belong to R(L). Hence Hw,;, i>1, ave defined and
belong to D(L) N N(L)~

Let
(4'1) SOE<¢)17(p2’ "‘?(pﬂ7HwQ+1’ "'7me> .

We note that dim S,= p 4+ m — ¢. The sequences of projections P, and Qo
on S are now defined as follows

(4'2) Qmm :E (m, wz‘)wi for all v e S,
=1
» m
(4.3) Pov=2(z,0)p,+ 3 (v, I*w;)Hw, for all ze 8,
=1 T =gt

where m > ¢. The operators P, and @,, have the following properties:

(i) P, and @, are continuous linear opeators defined on all of §.
(i) B(Qn) = {0y, Oqy vevy 0, .
(iii) R(P,) = S,c D(L).
(iv) P, =P, and @ = Q,,.
(v) Therangeof I — @, is a subset of R(L), and H(I — @,,) is a continuous
linear operator defined on all of 8.

13
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Theorem 4.1. The following relations hold:

(i) HI — Q) Ly = (I — P,)» for all x € D(L).
(i) LHI — @)z = (I — @)z for all z€S.
(iii) LP,» = @, L for all e D(L).
(iv) P, HI—Q,)z =20 for all x€ 8.

These identities are immediate consequence of the definitions of the opex-
ators L, H, P,,, @,,, and are essentially the same as those requested by Cesari
in [1}¢,, and restated by Locker in [7];,. Because of these identities, problem
Lz = Mwx is equivalent to the system of equations

m:P7nw+H(I_Qm)Nw7 Qm(L——N)m:()y

as one could verify (cf. Cesari [1}). In 9 and in our situation, we shall show
in detail that any solution of this system of two equations is also a selution of
Lz = Nwx. In[1], the first of these equations is ealled the auwiliary equation,
and the second one the determining or bifurcation equation.

It may be convenient to consider two copies X and ¥ of the space 8, and
note that we have actually performed the decompositions

Y=Y,+ 7Y, Y=Ly .., 00, Y, =Y,
X=X, + X, Xl):<‘7’1,'--,(Pnyﬂwa*l‘la'“’me> =&, Xlzlréz

with dim Y, =m, dimX,=p +m —¢q, H: Y, = X, Q,: ¥ = ¥ with @, Y
=Y, I—Q)Y—=7Y, and P,: X - X, P,X =X, (I—P,)X = X,.

5 - Derivation of certain interval representation for H and H(I-Q,)

Congider the n xn matrix @(f) which has ¢i™?(f) as its entry in the i-th
row and j-th column; 4,§ = 1,2, ..., n. For each teJ this matrix is known
to be nonsingular. If we compute @-! by forming the adjoint matrix of @,
then the entry in the j-th row and n-th column of @-(3) is just [det P@)]~
- W,(8), where W,(¢) is the determinant of the matrix obtained from @(t) by
raplacing the j-th column by (0,0, ...,1). Thus for each t e J, we have

0 fori=0,...,0—2

(5.1) S [det DI SLH W) =
et AN

1 fori=mn—1.
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Let @(-,*) be the function defined on the square J xJ by

G, 8) = i [(pa(s) det P(s)11 D, (1) W,(s) a<i,s<b.

£==1

—
]
15
~

Clearly G{(-,-) is continuous function on J xJ and G(-,s)e H*J).

Lemma 5.1. Left ye 8, and
¢
(5.8) u(t) =[G, $)y(s)ds  for all ted .

Then the function uwe H™J) and vu = y.

This is an immediate consequence of the definitions and of relation (5.1).
(The lemma is also stated by Locker in [7], and, in different notations, by
Coddington and Levinson in [2]).

In the next lemma we obtain a matrix (4,;) which satisfies the equation
(4y;) (B,.((pi)) = f, where I is the (n — p) X (n — p) identity matrix.

Lemma 5.2. There ewist real nuwmbers Ay, 1=p+1,..,0 and
j=1,2,..,k, such that

R
> AyuB@p) =06, forli=p+1,..,n.

=1

Proof. Let B be the kx(n—p) matrix with entries B;(p;), where
j=1,..,kand i=9p 4 1,..,n It is easily seen that B has rank n —p.
Earlier, we noticed that k>n — p (see 3 (v)). Consider a suitable k x (k — n - p)
matrix with linearly independent columns and let the matrix be denoted by D.
Let (B:D) be the kx Lk matrix formed by the elements of B and D such that
the columns of B occupy the first position. Clearly the matrix D can be choosen
such that (B:D) is non-singular. Hence (B:D) has an inverse. Let the inverse
be denoted by A. This is the required matrix.

The following theorem gives an integral representation for H.

Theorem 5.1. Let ye R(L). Then Hy has a representation given by

(Hy)(t) = § @) fpu(s)y(s)ds + [G(t, s)y(s)ds ted,
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where the ys are defined as follows

b
(5.4) pi() = —[G(s, ) Dy(s)ds 1=1,2,...,p,
t

kE a—1 n

(3.8) Lt)=—2 2 z[pn t) det D(0)12Ay; W, () (B2 Y1a e () e By Hipy (1)
=1 =0 =]
l=2p-+1,..,.

Here the constants B are defined as follows:

/3(')“ “1:1(17(;)(“1) + ...+ “hii(p(,vi)(a’h) s
BE = oty;0( ) + ... - 050 ()

(5.6)

}
;:)'— “Ilﬂq):‘l {ar) -

Proof. Take ye R(L). Let = Hy and u(l -—fGt s)y(s)ds, ted.

Using basic properties of H together with Lemma 5.1, we notice that
z,u € H*J) and v(# —u) = 0. Hence # — u € N(r). Thug

(5.7) 2(t) = X e;p,(0) + u(t) ted,

where ¢;s are real constants. Since ze N(L)Y, we have (x,¢;) =0 for
1=1,2,..,p. But (2,¢,)= (z ¢:pi, @) + (w, ). Therefore, ¢;= — (4, @),
l =1,2,...,p. On the other hzmd by Fubini’s theorem and by (5.4), we have

b t

(%, ¢1) f (J6(t, 5)y(s) ds) pu(t) dt

a

b b b
=[ [G{, s)y(s)p,(t)dtds = — [ y(s)p.(s)ds .
Thus
(5.8) = — (U, @) fJ $ds 1=1,2,...,p.

Moreover, since © € D(L), we have B,(x) =0, j = 1,2, ..., k. Sinee ¢y, ..., ¢u
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belong to N(L), we have

By(w) = By(S eps) + Bjlw) = 3 0.B,(p0) -+ Byla) .

i=p+1
Thus > ¢.Bi(p;) + Bi(u) =0 i=1,2,...,k
i=p+1

Multiplying the above equation with 4,; and summing up with respect
to the index j, we get

S S eduByp) + X AuByu) =0.

=1 {i=ptl =1

Hence, by Lemma 5.2, we get

I3
6o=—yayB;(u) l=p-+1,..,n.
=1
n—1
But B,.(u) = z (aoiiu(i)(a) —}— ves + o(hjiu(i)(b))_

=0

t
Since u(t) = [G(t, s)y(s)ds, we have
ay b
u(a) =0, w(a,) =[Gay, )y(s)ds, ..., u(b) = [G(b, s)y(s) ds .

Further, successive differentiation of 4 and repeated application of (5.1) yields

w9 (¢) :f nZ[pn(s) det ()] PP W (s)y(s)ds i=10,...,m—1.

a r=1
Thus for ¢ = 0,1, ..., n —1, we get
wMNa) =0,

W) =[5 [pas) det D(s)] 10 (a) W,(s)y(s) ds

a r=1

Cp-1 B

way—) = g [pa(s) det D(s)12 ¢ (@) W (s)y(s) ds

a

[ b

wd(b) = 3 [pals) det O(s)I @ (b) W (s)y(s)ds

4 7=}
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Now substituting the above expression in the following, we have, also using (5.6),

n—=1

S (e (@) ... - o u0(D)),
2
T3 () + e+ ol gl ) [[pa(s) det B(s)T W, (8)ys)ds

+ (o5i (@) A o+ o (0 )f[Pn det @(s)I"* W.(s)y(s) ds
+ .

-+ o fu» 5) det B(s) W,(s)y(s)ds  and

n

|
-
=

3

f O taan(8) T oo Brian i ($)[Dals) det D(s)1 W, (5)y(s)] .

Il
L 1\

=0 r

k

Substituting this expression in ¢,= — > 4,,B;(u), we get
J=1

n=1

E n b
e=—3 3 3 [[pa(s) det D()T Ay, W()Y(8) (B o (8) oo FB Hian_o1(8)) A5,
J=1 i=

r=1 a

=9 +4+1,.. and, by (5.5) also

(5.9) a=ly(s)p(s)  1=p -+ 1.0

The relations (5.7), (5.8) and (5.9) give the required representation.
Let K(-,-) be the function defined on J XJ by

= > @) pi(s) + G(f,5) for a<s<i<h,
(5.10) =

K(t, 8) = 2 @u(t)pi(s) for a<i<s<b.

=1
We note the following properties of K(-,-):
(i} K(-,s) is continuous on J together with its derivatives up to order
(n — 2) on J, while the (n — 1-th derivative 0-1K(-, s)/o¢*! is discontinuous

at ¢t = 8 with a jump given by

gn 1K (s + 0, 8)[o¢r—t — 9K (s — 0, ) [Ci"t = 1[p.(s) .
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(ii) For ¢ =0, 1,..., n — 1, the function ¢<K(t, s)/ot’ is discontinuous at
each of the points s = a,. The discontinuities are of first kind and the jumps
are continuous functions of ¢.

We now state a corollary of Theorem 5.1.

Corollary. The right inversec operator H has an integral represeniation
given by
b

(5.11) (Hy)(@) =[E@, s)y(s)ds  ted,

a

for all y € R(L).

Let K,(-, ) be the function defined on J xJ by

m b
(5.12)  K,(t,5) = K(t,s) — 3 (JE@E, &w,(5)dE)w,(s) a<t, s<b.
=1 a
We notice that 04K, (-,-)/ot, ¢ = 0, ..., », ave square integrable on J X J, while
b
the function [(8:K,(-,-)/3t!)2ds ¢ = 0,...,n — 1, are continuous on J.

a
The following integral representation for the operator H(I — @,,) is now
an immediate consequence of the above relations.

b
Theorem 5.2. Lot 2 e8. Then (H(I — Q,)n)@) =[K,(, s)as)ds ted.

6 - Operator equation and assumptions

In the rest of our work we follow the notation of earlier sections and analyse
the problem of existence of solutions of the MPBVP

(6.1) Ly = Nu,
where NV is defined as follows

D(N) = {we H=1(J): sup |oi(t)| <R; i = 0,...,n — 2,
tEJS
(6.2) ess-sup |am1(t) | <Ry},
ted

(Nz)(t) = X(¢, (), ..., a=1(t)) forallt € J for which |a-1(1) | <R,-, .
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The following assumptions on L and N are assumed throughout the rest
of the work.

(i) L satisfies all the assumptions of 3 and 4.
(i) X(-, ..., -) satisfies all the assumptions of 2.

Under the assumptions of 2, we observe that Nz e § for @ € D(N).

7 - Some estimates

Let # and y € D(N). Then, by (2.3) and triangle inequality,

Iz — Nyll = X (-, @(-); ey @) — X (-, 4()y ooy ¥ 2

<o 2 Ml — yll)

n=2

<k(VI—a(Z sup |a9() —y9(@)|) + |Ja-0 — y-v])

=0 {€J

< Kol — 9l
where || || is the norm on H=»-1(J). Thus, for z,y € D(¥),
(1.1) |3z — Ny <hollz — I -

Let us now define 0,, and 0,, by taking

n—2z

(1.2)  0,=vb—a(3 (sup fb (0K, (2, 5)/0t7)2 ds"?)

=0 {&J a

+ [ [(0m K., (8, s)[ot»—1)2ds de)"/?

a

b
0,,=max sup [(0°K,(¢, s)[0t)2ds) ",

T=0y...,—1 H1:=12 a

b
Noting that [(8¢K,(t, s)[ot?)2ds is a monotone decreasing sequence for every ?,
N a

Dini’s theorem assures uniform convergence of this sequence to zero as m — oo
for i=10,1,2,..,n —1, Thus both 6, and 0,—0 as m — o9, Let z€f,



[13] AN EXISTENCE ANALYSIS ... 195

Then, by Schwarz’ inequality and (7.2) we have

b n-g b
[ {E.(, 8)zs)ds] =Vh —a [5 sup | [o K, (1, s)/0i(s)ds]]
e i=0 &S a

(B (1, 5)[etr-a(s) ds|

n—2 b
<Vbh—al3 sup (O K., )/0)ds o]

i=0 {&J a

b b
[ [(e It s)fer1)2ds @t o] = O] -
Hence for all 2 e 8 we also have

(7.3) 1o $)a(s) sl <Ol

Similarly, for € § we can show that

(7.4) w(JE (-, s)m(s)ds) <0, =] .

a

8 - Definition of sets 7 and §

Letus consider the Banach space H»1(J) with norm || - || and psendo-norm u.
We choose 2,€ 8, such that f = u{z,) <R, wllere R = min [R;, i = 0,1,
vy — 1], Let 2y= H(I — Q,,) Nw,, and let ¢ and ¢ be real constants such that
(8.1) lzoll <e,  plzg)<e.

Let ¢, d,r and B be positive real numbers such that
(8.2) ¢c+e<d, RI+B<R, r+e<R.

The sets V and S in H*1(J) are defined as follows
(8.3) V=/{xel,: llv—al <, (@ — x,) <},

(8.4) 8 = {we H1(J): ||lo — o)l <d, ulo — m) <R} .

COlearly, o, € V c §c D(N). Moreover, V and S are closed, bounded end con-
vex gsubsets of H»1(J),
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‘We assert that 7 is a clogsed and bounded subset of S. Indeed, let {yk} be
any sequence contained in ¥ and let {;1/,:} converge to y in the topolegy of §.
We notice that {y,} c H*J). Since S, is finite-dimensionzal, y € §,. Also, since
linear operators on a finite-dimensional space are bounded, it follows that {Ly,}
converges to Ly in the topology of 8. Hence, by a lemma of [5], the sequence
{y} converges to y in the topology of H»(J). Hence the sequence {y,} converges
to y in the topology of H»(J) and u(y,—y) =0 as k — o and ye V. Ob-
viously, ¥V is a bounded subset of 8. This proves our assertion.

9 - Operator T and sets A(z*) and 4
For each @* € V, let T be the operator on § defined by
(9.1) To =%+ H(I — Q,)Na

for # € 8. We observe that 7T is well defined on S.
For each a* e V, the set A(2*) is defined by

(9.2) Aw*) = {we8: v = Tw}.
We denote by

(9.3) A =y Ax¥).

=i d

Suppose A(z*) is non-empty. Then
(9.4) 2= Tp=u*+ HI—Q,) Nz for some ze§.
Clearly @ e D(L), and by Theorem 4.1 (iv) we have P,a = s*. Thus

Ly = LP,x + LH(I —Q,)Nx .
Using parts (ii) and (iii) of Theorem 4.1, we get
Lo — Ny = Q,,(Ly — Nz) .

Hence z € § is a solution of (6.1), if it satisfies the equation

(9.5) Qu(Lw — Nz) =0,
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Bquation (9.4) is the auxiliary equation and (9.5) is the bifurcation equation,
as we briefly mentioned in 4.

In the following section we show that A («*) is non-empty. Thus the original

MPBVP (6.1) will be reduced to equivalent bifurcation equation (9.5) on
the set 4. '

10 - Reduction of the original MP BVP to an equivalent bifurcation equation
and solution of the bifurcation equation

The following theorem with the usual proof reduces the original MPBVP
to an equivalent bifurcation equation by making use of the Banach’s fixed

point theorem.

Theorem 10.1. ILet the assumplions of 6 and conditions (8.1) and (8.2)
be valid. Let «m» be sufficiently large such that

(10.1) Onke<<l, c¢-+e<(l—0,k)d, 7+ <R — 0,k .

Then for each a* eV the set A(x*) is singleton. Moreover, the singleton A(z*)
varies continuously with «* and Lz — Nx = Q,,(Le — Nw) on the set A.

By Theorem 10.1, for each o* € V there exists a unique element £e€ 4 c S
such that

t=Tt=uao"+ HI—Q,)Nw.
Let I'(x*) = £. We note that I V — D(L) N § and is continuous.
The next theorem is an immediate corollary of Theorem 10.1.

Theorem 10.2. Let the assumptions of Theorem 10.1 be valid. Suppose
there exists an x* eV such that

(10.2) Q. (LlIw* — NI'w*) =0,
then # = I'x* is a solution of thé MPBVP Ly = Nw. Further,
Qm:ﬁ = g* ’ ]“:6 - mom <d ’ lu(:6 - :ﬁﬂ) <R— .

Thus, we have found a unique solution & = I'z* of the ausiliary equa-
tion @ = #* 4 H(I —@,)Nz, and by substitution the bifurcation equation
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@n(Lw — Nw) = 0 has taken the form (10.2). In the terminolegy of [1], and [6]
we may say that we have reduced the original MPBVP problem to the alterna-
tive problem (10.2) in the finite dimensional space X,.

Elsewhere we shall apply the general process discussed above o a numerical
problem. Namely we shall show that the problem

a" = (wa') 4+t — (2fm) sinmt, (') = d/dt, @'(0) = @'(1) = (1/2) = 0

hag indeed a solution meHs(J). In this problem we take J = [0,1], 7w = a",
Bi(z) = x'(0), By(x) = 2'(1), B,(» 2(1/2), and then the operator I is defined

by Lz = %, D(L) = [ e H3J), 2'(0 )—rr( ) = 2(1)2)]
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