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Linear symplectic relations and floating networks (**)

Introduction

Floating reciprocal networks are analysed. It is shown that such networks
can be composed of resistors interconnecting terminals. Results are well known,
however the use of simplicial complexes and symplectic relations gives new
meaning to the derivations.

Simplicial complexes were used to analyse networks by Oster and Perel-
son [4] and by Smale [5]. A general theory of linear symplectic relations was
developed by Benenti and Tulezyjew [1].

This paper is related to an earlier paper {2] in which interconnections of
reciprocal networks are studied.

For a general theory of linear networks see [3].

1 - Complexes associated with an n-termina. metwork

We denote by K the set of terminals of an n-terminal network. For each
¢ = 0,1, .. we introduce two spaces (7 and C,: The space (7 is defined as the
set of formal combinations

@ = A e gy ey g

(¢ +1)!
of elements (uo, ..., p,) of K1, with real, totally skewsymmetric coefficients.

(*) Indirizzo degli AA.: A. CURIR, Osservatorio Astronomico di Torino, 10025, Pino
Torinese Italy; F. PAsTRONE, Istituto di Fisica Matematica «J. L. Lagrange» Via
Carlo Alberto 10, 10123 Torino, Italy.
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The space O, is defined as the set of real skewsymmetric functions on Ko+t

b: K — R (Upy oony Yg) b

Hareey Bg *
Spaces €7 and C, are dual to each other.

A pairing {,>: 0, X (0?— R is defined by

1 s Bg b
RS b

Spaces 07 form a chain complex

<a’: b> =

1 a2 o 3 4
L0 E B EL,

with the operators ¢¢ defined by

1 1
aq(m akes Ha (,uoy cesy ,u'zz)) = E HE QtHos s Has (/‘07 ceey /"a—l) .
Spaces C, form a cochain complex
b, 0,8 Gl 0,5 L.,

with the operators d, defined by
at1 )
dab(,u(n "'7,ua+1) = Z (‘”’ 1)‘ (,uoy ---7/253 ---7/1«41-\‘-1) s
=0

where /i, indicates that u; has been removed from the sequence (o, ..., fety)-
Relations cogeti==0 and d,,d,== 0 are obviously satisfied.

Both complexes can be augmented. The mappings

=Ry au)— Y ar, &R 0Cybeb,
) #

where eb(u) = b, satisfy not= 0 and dye = 0.
Hence, sequences
0-RILCEE .., 0B % (14 (2

are augmented complexes. It can be easily shown that these sequences are exact.
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The two augmented exact sequences are dual to each other because operators
7, & 0¢ and d, satisfy the duality relations

a, eb) = {na, by, <a, d,b)> = {o%*'a, b,

for any ¢ and any « and b in the appropriate spaces.
The pairing <, >: RxXE — Bk is defined by <a, b) = abd.

2 - Nodal analysis in linear electric networks

The general problem in electrical circuit theory is to determine how & given
network responds a set of excitations. Let us consider a linear electric network,
with #» nodes and associate to each node y a nodal voltage v,, which is defined
as the voltage between node x and the ground. TFrom physical experience we
know that, for usual networks, any set of nodal voltages (excitation) gives rise
to a unique set of nodal currents (response). The excitation-response cor-
respondence can be expressed by = linear relations

(2.1) b= Gury, wmi=12,..,n,

where the matrix Gu#* characterizes the behaviour of the network. In (2.1)
the summation econvention holds. ‘
If det Gu2s£0, relations (2.1) can be inverted to obtain

(2.2) vp = RMiy;

this means we can consider a set of nodal currents as an excitation and obtain
a unique response in terms of nodal voltages.

In linear network theory it is usually assumed that the matrix G = (G#3)
is symmetric. We shall formulate a geometric counterpart of this condition
in a suitable space, the direet sum of the current and voltage spaces.

Let I denote the vector space of nodal currents and let ¥ be the space of
nodal voltages. These spaces are identical with the spaces C° and C, introduced
in 1. The space P,= I@® V has a canonical symplectic structure induced by
the duality of I and V. We denote by w, the symplectic 2-form on P, defined by

(2.3) 0! Py X Py — RI(1® 0, i’ @ ') > 3y > — 4,0

= 3 (i"ou— i*v,) .
»
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The relation (2.1), which we can write in the abstract form i = Guv, is
geometrically represented in P, by its graph

(2.4) No= {i® vePy; i = Gv} .

The behaviour of a linear electric network can be represented by a subspace
N, of P, even if relation (2.1) can not be used.

A subspace N of a symplectic space (P, w) is said to be Lagrangian if
dim ¥ = } dim P and the restriction of @ on N vanishes: w, = 0. The graph
Ny of ¢ is a Lagrangian subspace of P, if and only if ¢ is symmetric. The
physical meaning of ¥, being Lagrangian is the network is reciprocal (cfr. [2]).

For a reciprocal network the following two conditions are equivalent
(i) . (ime)c N, (ii) =z '(kern)> N, .

Here v,: V — P, is the canonical injection and s,: P, — I is the canonical
projection.

If N, is the graph of a mapping (2.1) then the two conditions can be
restricted in the form

(1)) imecker@, (ii) kernoim & .
A reciprocal network is said to be floating if the above conditions (i) and (ii)

are satisfied. In terms of the matrix G#* a network is floating if > G2 =0,
i

for each u. Floating networks usually satisfy the following conditions

@7 ime= YN, , (il)" kerwn = n,(N,),

or (i)” im &= ker G, (i1)" keryn=1im @.

3 - Synthesis of floating reciprocal networks

We introduece the spaces J and I of branch currents and branch voltages.
These spaces are identical with the spaces C* and C,, respectively, of 1.

An element j = 1 3 ju*(u, 1) of J represents the distribution of currents

: 2

Byl
floating inside the network between pairs of terminals. The terminal current

distribution ¢ e I is related to j by

(3.1) i=01j <> in= Y ju.
i
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The terminal current distribution 7 obtained from the relation (3.1) automati-
cally satisfies the constraint #i = 0.

On the other hand different braneh current distributions may produce the
same terminal currents.

An element ec B, ¢:H XK — R.(u, A) — 6., represents relative voltages
between pairs of terminals. These voltages can be obtained from terminal
voltages by

(3.2) ¢= v <> Gu="V1— 10, .

Different terminal voltages may produce the same relative voltages and
relative voltages ¢ obtained from (3.2) satisfy d.e = 0.

Spaces J and T are dual to each other. The direct sum P,=J @ F is a
symplectic space. The symplectic form w, is defined by

(8.3) wiiPyXP, =R (i®e¢j® ') = (§y ey — <G, €)= 5 z (5" eur— j"le;l‘,\) .

thi

There is a symplectic relation g from P, to P,. Elements i@ ve Poandj@ ec P,
are in this relation if 4= 0!'j and e¢= dyv. Theimage N,= p(N,) of the
Lagrangian subspace N, is a Lagrangian subspace of P;.

For a floating network the following conditions hold

(3.4) ot = Ny,
with g the transpose of g, and
(i) #z'(im dy) D Ny, () (kerdy)cnN,.
If N, is the graph of a mapping ¢ = #j, then
(iyy imd,>imr, (ii)" ker o*ckers.
Relation (3.4) implies that N; represents equally well as N, the behaviour

of the network.
Assuming the regularity conditions stated at the end of 2, we can prove that

(1) im dy= wy(Ny) (i)’ Ter 3= Iy,

or 1) imdy=1imr, (i1)” ker o'=kervy.



128 A. CURIR and F. PASTRONE [6]

An example of the mapping » for a three terminal network is given below

(3.5); Byy= A[(G® + GU)J12— GuJ=— uju],
(3.5). By = A[(GW 4+ G12)J 58— GRJ31— U],
(3.8)s By = A[(G2 4 G2) T3 — G312 — G12J¥],
where

A= 1

T Gugw 1+ @ar@es - Qs ’

This example corresponds to the mapping (2.1), with g, 1 = 1, 2, 3, describ-
ing N, in the case of a three terminal network.

Assuming that N, is the graph of the mapping (2.1), there exist mappings
g: B - dJ.e+—j= ge such that

(3.6) @ = Blogod, .

Since d, is not onto and o' is not univalent the mapping ¢ is not uniquely
determined. We can construet a mapping ¢ distinguished by being diagonal.

From i#= >, G#*v; we obtain
(3.7) = 3, Gur(v,— vu) ,
assuming that >, G#t= 0. Hence
(8.7) == > grer (v, — V)
The mapping j = ge defined by
(3.8) JHr = — giheus ,

satisfies (3.6) if gur= — @#* for u 5 A

As a result of this construction we have the following synthesyis of a floating
reciprocal n-terminal network. The network can be obtained by interconnect-
ing the terminals with resistors; the resistor interconnecting terminals p and 1
has conductance gui,

If voltages o, are connected to the terminals, t®hen currents
j#r = — g#i(v3— v,) flow between terminals inside the network.,
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The current j#* flow from terminal £ to 4. Hence the total current i# flowing
into the terminal y is it= 3, jrt= — 3, g"H(vs— ).

Acnowledgement. The Authors are deeply indebted to prof. W.
Tulezyjew for his helpful suggestions.
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Summary

N-terminals electrical networks are studied using simplicial complexes and linear sym-
plectic relations. New meaning is given to the derivations of resulis on floating reciprocal
networks.
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