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WiniaAM D, APPLING (¥)

Bounded finitely

additive set functions and integrability (**)

1 - Introduction

Suppose N is a positive integer. Functions of the following variety abound:
f a function from R¥ into R, bounded on each bounded subset of RY, having
the property that if U is a set, F is a field of subsets of U and {&}7 is a se-
quence of real-valued finitely additive bounded functions with domain F,
then the integral (see 2) [,f(&(I), ..., Ev(I)) exists. Examples of such are
S lws, max {@y,..., oy}, min {a, .., o}, ([, @, and [[, |o| p; for
1<N,0<p;fori=1,..,N and X7, p,=1. This paper is concerned
with an integrability characterization theorem for such functions. We ghall
assume given a positive integer N and a function f from R¥ into R, bounded
on each bounded subset of R¥. Our prineipal result is the following, which we
shall comment further upon after stating it

Theorem B.1. (see 3). The following three statements are equivalent.

(1) If U is a set, F is a field of subsets of U and {&;}7, is a sequence of real-

valued finitely additive bounded function with domain F, then [, f(&(I), ..., Ev(I))
exists.

(2) If [r; 8] is a number interval and {93, 18 o sequence of real-valued

functions with domain [r; s] having bounded variation, then Jtrsif @Gy oy dgy)
exists (see 2).

(*) Indirizzo: Department of Mathematics, North Texas State University, Denton,
‘Texas 76203 TUSA.
(**) Ricevuto: 8-1X-1982,




86 W. D. APPLING 21

(3) f satisfies the following conditions:
(i) if 0 < ¢, then there is d > O such that if {(#7, ..., dP)} ", is a sequence
of elements of R¥ such that >, >¥ |aP| < d, then 3™ |f(@7, ..., 2| <e¢;

(i) f ¢s continuous;
(iii) suppose that {D(w)}Z., is a sequence of inierval subdivisions (see 2)

w=1

of [0; 1] and {g.}1, is a sequence of real-valued junctions with domain Q= {z: @ in
{p, ¢}, [p; q] in D(w) for some w} such that

(a) D(w + 1) « D(w) (see 2) for all w,

(b) for each [p,q] such that {p, ¢} CQ, v[p; gl= sup {3, > ow) a1 |9:(5)
— g:{r)|: w a positive integer, {p, ¢} € Upw {7, s}, Dw)[p; ¢ = {[r; s] in D(w),
P<r < 8<q}} < oo,

(e) norm (D(n)) =0 as n — oo.

Then, if 0 << ¢, there is d > 0 and a positive integer T such that if w is a posi-
tive integer >T and D(w)*= {I: I in D(w), v(I) < d}, then (seec 2)

zp(w)* [{(Agyy ey Agy) — ED(w+1)(I) 4 gyy ..oy A’QN)” <c.

Now, at a superficial glance, the equivalence of statements (1) and (2)
appears to be trivial; indeed the proof that (2) follows from (1) is so routine
that we leave it to the reader. However, showing that (1) follows from (2) is
quite another matter and requires some rather intricate considerations, notions
expressed in statement (3). The argument for the equivalence of the statements
thus runs as follows (1) = (2) = (3) = (1).

2 « Preliminary theorems and definitions

For the notions of subdivision, refinement, >-boundedness and integral,
we refer the reader to[1] as they apply to real number set-valued interval
functions, and to [1],, as they apply to real number set-valued set functions.
Throughout this paper, when, in a given discussion, the context of set func-
tion vs. interval function is clear, we shall refer to such notions ag « subdivision »,
« refinement », «integral » ete., without preamble and with at most minor no-
tational changes. In either setting « <« » shall mean ¢refinement of». If ¥ <« D
and I is in D, then B(I) denotes {J: J in B, J C I}. For real-valued functions
defined on number sets we shall use the « 4 » notation in the standard way to
denote differences; when the need arises to denote particular subdivisions from
which differences arise, appropriate subscripts or superscripts will be attached.
The reader is referred, respectively, to [1];, for a statement of Kolmogoroff’s
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differential equivalence theorem [2] and certain of its more immediate con-
sequences, for interval functions and set functions.

Finally, if U is a set and F is a field of subsets of U, then p, , denotes the
set of all real-valued bounded finitely additive functions defined on F, and pf,
denotes the set of all nonnegative-valued elements of p,,,:

3 = The subdivision norm infimum funection

In this section we gtate a definition and theorem of [1]; that we shall use
in proving Theorem 4.1 and proving that in Theorem 5.1, (3) implies (1).
Suppose that U is a set, F is a field of subsets of U and g is in p},:

Definition [1];: p* is the function with domain F such that if V is in F, then
p(V) = inf {max {u(J): J in D}: D < {V}} .

Theorem 3.A.1 [1]. [, [u(I)2— w*(I)?] = 0, so that if 0 < ¢, then there
is D <« {U} such that if B < D and I is in B, then u(I)— p*(I) < ec.

4 - A Z-houndedness characterization theorem

Theorem 4.1. The following three statements are equivalent.

(1) If U is a set, F is o field of subsets of U and {&;}7, is a sequence of ele-
ments of Pp,z, then f(&y, ..., &) is Y -bounded on U.

(2) If 0 < ¢, then there is d > 0 such that if {(9, ..., aP)} ™ is a sequence

cloments of R¥ such that S, 3% |a¥| < d, then D7, |f(@?, .., o) <e.

(8) If [r; s1 is a number interval and {g}7, is a sequence of real-valued
functions with domain [r; s] having bounded variation, then f(4¢y, ..., Agx)
is >-bounded on [r; s].

Proof. We first show that (2) implies (1). Suppose (2) is true, U is a set,
F is a field of subsets of U, and {£,;}7_, is a sequence of elements of p, .. There
is M >0 such that if Visin F, then [f(&(V), ..., &(V)) | <M. Let u = 7 []&:].

There is d> 0 such that if {(z,...,a?)}™ is a sequence of elements of R¥
such that > 3% [4| < d, then D™ |f(@?, ..., a)| < 1. Thereis D < {U}

=1 Legt=l

such that if # « D and I is in E, then p(I) — p*(I) < d. Let @ = the number
of elements of D. Suppose I/ <« .D. For each I in D, there is J(I) in B(I) such
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that u(J(I)) = max {u(J): J in B(I)}, so that

za(n—wu)} 25;1 ()| < zzm—{.r(n} ()= p(I)~ M( (I)) <pd)—pHl) < 4,

g0 that

zE H(‘Sl(‘] i 5\ ) i - zD (ZE(I)—-{J(I)} If(él J)7 Loy ‘SN(J)) ])
+ U(&(J(I)), ey E(TD) 1< 2o [(1) + M= QL + M) .

Therefore f(&,, ..., &) is >-bounded on U. Therefore (2) implies (1).

The proof that (1) implies (3) is quite routine and we leave the details to
the reader.

Now suppose that (3) is true but that (2) is not true, so that there is ¢ > 0
such that if ¢ > 0, then there is a sequence {(2, ..., #{’)}™, of elements of R¥
such that >7 > [49] < d, but > |f(«?, ...,m"’ )| >ec. Simple considera-
tions tell us that for each positive integer n there is a sequence {(¢!’(n), ...,
#P(n))} ™ of elements of RY such that 37 37 |2P(n)| < 2-», bub
P H(#(n), ..., @3 (n)) | >¢/2, and such that either for all n, all of {f(a{"(n),

j==1 1 YYN

.J, #P(n))} 7 are nonnegative, or for all n, all of {f aP(n), ..., 29 (n)) ;’;(;" are
nonpositive. For each ¢ =1, ..., N, let &¥, &2, . ‘1’(1) w(m‘”)(l) #M(2),

a2y .. For each i=1,..., N, let g, denote the functlon on [0; 1]
such that ¢,0) = 0, and if m is a posmve integer and 1/(m 4 1) < z<1/m,
then g,(z) = Y- 29, Clearly, {g.}7, is a sequence of real-valued functions

with domain [0; 1] having bounded variation. Now, {3% f(z?, .., 29"} 2 is
an unbounded monotonic sequence. There is a number M such that if I is a
subinterval of [0; 1], then [f(4g,, ..., dgx)| <M. Now suppose that D is an
interval subdivision of [0; 1] and 0 << K. There is a positive integer ¢ such that
for some [0; p] in D, 1/t < p. There is a positive integer w > t such that

J==1

|30 @D, oy #80) | > K + M+ [{gu(p) — q:(1/8), ..y gwlp) — gx(1/8) |
+ zD—{[o;p]} !f(Ag17 very Agy)l .

Let B = {[r; s]: [r; 8]1=[0; 1/(w + 1)], [1)(w + 1); 1/w], ..., [1/(t -+ 1); 1/t],
[1/t; p], or [r; s] is in D — {[0; pI}}. Thus

| 26 (g ey Ag) | = |f(ga(1/(0 + 1), ..., gu(1/(w + 1))
+ 20 @D, oy D)+ () — (18, -.ey gu(P) — gu(L]E))
+ Zotonn [(AG1s oy dgw) | > — [H{g2(1/ (w0 + 1), vy gu(1/(w + 1)) |
|20 16D, oy 8 = 1H(gu(P) — G(1/8); ey Gu(D) — gu(L]1)) |
— Doty (A8 ooy dgy) | >— M+ K+ M=K .
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Therefore f(Ag,, ..., Agy) is not »-bounded on [0; 1], a contradiction.
1 b ? )

Therefore (3) implies (2). Therefore (1), (2) and (3) are equivalent.

5 = The integrability characterization theorem
In this section we prove Theorem 5.1, as stated previously.

Proof of Theorem 5.1. As mentioned in the introduction, we leave
showing that (1) implies (2) to the reader.

‘We now show that (2) implies (3). Suppose that (2) is true. First, we see
that (i) if (3) immediately follows by Theorem 4.1.

‘We now show that (ii) if (3) holds. Suppose not. Then there is ¢> 0,

(21 ...y 2) in RY and a sequence {(2\7, ..., 29)} 2, of elements of R¥ such that
2y 2y 2= A < ooy [flay A)""f Dy g >e for all .

Clearly, now, for each ¢ =1, ..., N, the real- valued function, g;, with domain
[0; 1] such that ¢,(0) = 0, g,(1/j) = 2 for each positive integer j, and g,(z) = 2,
otherwise, has bounded variation.

Now, suppose that D is an interval subdivision of [0;1]. There is p >0
such that [0; p]isin D. Thereis d > 0 such that if {(#”, ..., #{")}™ , is a sequence
of elements of R¥ such that 3™ >¥ |a|< d, then X |f(#, ..., 8" |< ¢/4.
There is a positive integer ¢ such that 1/f<<p and EH > e —2P | < d.

Consider the interval subdivisions B, = {[9 s]:[r; s1==[0; 1/¢], [1/t; p], or
[r; 5] in D— {[0; pI}} and B,= {[r; s1:[5 s1= [05 (1/2)(L/(¢ + D+1/0)], [(1/2)
S/ 1) 4 1/9); 1/6], [1/5; p], o [r5 5] in D— {[0; pl}}. Now

i=

Sw, [(AG1y ooy Adgn) — e, HAgsy ..., Agy) ]
= flery ey ) - & — 21y ooy 20— 2) + fga() — 2, ... gw(p) — )
— {1, ey 20) + Fu(p) — 22, ..,y gu(p) — 20} |
= [f(rs ey 20) A F@ — 21y ey 2 — ) _ fe?y oy )]
> [f#ry woey o) = [, oy &) | — [F(e0— 1, ooy 2 — 2w) | >0 — 0/4 = B0/t

Therefore [p,.,,f(dg, ..., dgy) does not exist, a contradiction. Therefore
(1) holds.
We now show that (iii) holds. Suppose not. Then there is {D(w)} ., and

w=1

{937, satisfying conditions (a), (b) and (c), but such that for some ¢> 0,
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if 0 < d and 7' is a positive integer, then there is a positive integer w> T such
that for some I in D(w), v»(I) < d, and for D*(w)= {I.I in D(w), v(I) < d},

ED«.«w) [[f(dgey oy Agy) — ZD(w-H) HA 1y ey A'gy)] |>e.

Suppose that 7 =1, ..., N. Let the real-valued function %, with domain
[0; 1] be defined as follows. If @ is in @, h,(z) = ¢.{(x); if @ is not in Q, h(»)
= lim g,(y), y in @, y — « —, this limit existing by an argument almost identical
to one of the well-known arguments showing that a real-valued function having
bounded variation on an interval is quasi-continuous on that interval. Clearly,
9: S h;. We now show that %, has bounded variation on [0; 1]. Suppose that D
is an interval subdivision of [0; 1]. There is a function, u, with domain Uy, . »
{p, ¢}, range C @, increasing, such that if # is in @ N [U[M] o 1P 4], then
u(w)=w, such that for each [p; ¢] in D, p < u(q)< ¢, and such that if » is in
Utpiat 1 212 @, then |Ry(w) — g(u(z)) | < 1/2m, where m is the number of in-
tervals of D, so that

20 [hilg) = D) | = 2o [Rilq) — gi{w(0)) + gi{w(q))
— [Rp) = g u(p))] — g:{w(P)) | < 2o [2/2m + g{u()) — g:(u(p))]]
=1+ 3| gu(q)) — g:{u(p)) | <1 + o([0; 1]) .

Therefore h; has bounded variation on [0; 1].

Therefore [p,..,f(dhy, ..., dhy) exists. However, suppose D is a subdivision
of [0; 1]. There is d > 0 such that if {(#}?, ..., #{7)}7_, is a sequence of elements
of R¥ such that 37 37 |41 < d, then Z=1 |47, ..., #2)| < ¢/8m, where
m is the number of intelvqls in D. There is a positive integer w such that
for some I in D(w), o(I) < d, and for D*w) = {I.I in Dw), v»(I) < d},

ZD*(w) [1(Agsy -y Agy) — zmw-x-nm (A g1y oy A'gn) | >

Suppose that there is some element of D¥(w) included in no interval of D and
let B¥(w) = {I.I in D*(w), I included on no interval of D}. Clearly, E*(w)
contains no more than m elements. Since, for each I in F*(w), max {zi=1 |4:9:],
S Sowiom | Asgil} < o(I) < d, it follows that

ZE*(W)]]‘(AQU seey AgN) - ZD(w+1)(1) f(A’gn sy A,gN)I

< ZE*(w) [f(Agyy -oes Agy)| - ZE*(w) zD(w+1)(l) (A gy oy A gy} | < 2me[8m = 4]e.
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Therefore E*(w) 5= D*(w), D*(w) — B*(w) is a subset of a refinement of D, and
2oty | F( Al ooy Ay) = Sptornin F(A Tyy ooy A7Dy)|

= ZD*(w)_E*(w) [{(Agyy oy dgy) — ZD(zv+1)(I) (A gyy ey A'g,) |
>2D*(w) H(Agyy .y Agy) — zD(w+1)(1) (A7gyy oy A'gy)

- (ZE*(w) H(4g1y ..oy dgy)| + zg*(w) zn(tu+1)(1) 1A gy ooy A'g) )
>c¢— ¢/4 = 3c¢/4.

Therefore, by differential equivalence, Jof(dhy, ..., dhy) does not exist, a contra-
diction.
Therefore (iii) holds. Therefore (2) implies (3).

We now show that (3) implies (1). Suppose that (3) is true, the hypothesis
of (1), is satisfied, but that T (&), ..., Ev(I)) does not exist. There is ¢> 0
such that if P’ « P « {U}, then there is H < P’ such that

< IZP f(El(l)’ ey N(I)) - ZE f(él(J)’ seny §A(J))] .

Let u = z 1 J1&:]. It follows, inductively, that there are sequences, {P(n)}2
and {E(n)}>,; such that for each n, P[n 4 1) < B(n) < P(n) < {U},

n==1

<< IZP(n) f(él(-[)y (] N(I)) - 2P(n+1) f(fl(J)7 "'7A N(J)) )

andif # < I(n), then, for each I in B, wl) — p*I) < 1/n.

Clearly, now, there are sequences {D(w)}., and {9:}i., satisfying the’fol-
lowing conditions.

(1) For each positive integer, n, D(n) is an interval subdi.vision of [0; 1].

(2) For each i =1, ..., N, g, is a function from @ = {ay:a; in (p, q), [P; q1
in D(n) for some n}.

(3) For each positive integer m, D(m 4+ 1) <& D(m).

(4) Norm (D(n)) = 0 as n — oo.

(5) For each positive integer n, there is a reversible function B(n) from
P(n) into D(n) such- that: : 2

(a) if m is a positive integer, V i is in P( m) and I is in P(m + 1)(V), then

B(m + 1)(I) € B(m)(V);
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(b) if m is a positive integer, V is in P(m) and 4 = 1, ..., N, then &;(V)
= A;g;, where I = B(m)(V), and if J is in D(m) and is not in the range of
B(m), then. 4,9.= 0. ‘

Now suppose that p < ¢, {p, ¢} €@, ¢ = 1, ..., N, wis a positive integer such

that {p, ¢} € Upw{r, s}, and D)[p; ¢1 = {[r; s]:[r; s] in D(w), p<r < s<q}.
Consider W= {V:V in P(w), Bw)(V) in D(w)[p; qI}. Clearly

zn(w)[ﬁ;Q]!Agi! = zw !‘Ez‘(v)l<2u’fr|§i(1)‘] .

Thus {D(w)}, and {g;}7 satisfy the hypothesis of (iii). Let v be defined
a8 in (iii). There is d >0 ‘md positive integer 7' such that if w is a positive
integer >7T and D(w)*= {I.I in D(w), v(I) < d}, then

’ zp(w)* [f(Agyy vy Ags) — ZD(w+1)(1) (A gy .y A'gy)| < /8.

Before proceeding, we make the following inclusion observation and leave
the inductive argument to the reader. If each of m and w is a positive integer,
m < w, Visin P(m), Y is in P(w) and B(w)(Y) < B(m)(V), then ¥ C V.

There is a positive integer Z such that Zd > u(U). There is a positive infe-
ger m* > T such that if each of (4, ..., yy) and (@, ..., xy) is in R¥, and for
i=1,..,N, |ly;— x| <1/(m*—1) and — 1 — w(U)<min {y,, } < max {y,, #:}
<1 4 w(U), then |f(yiy ...y Yn) — By, ooy @)} < ¢/8Z, and such that if
{7, s #Mm is a sequence of elements of R¥ such that ™ > |27
< 1/ (m*— 1), then 3" [f('7, ..., 29| < ¢/8Z. Now

j==1

< iZP(m*) f §1( V *3 EN ) Zp(m*ﬂ) f(EI(J)’ (A} EN(J)) !
zt’(m*) [f( El (If)) ZI’(m*—{*—l)(V) f( El(J)’ sy N(J))] I
< Iz;:(m*)* [f 51 V)) ey N(V)) - EP(m*+1)(V) f(gl(J% ) N(J))] I

+ IZP(m*)—I’(m*)* []‘(El(Tf *9 EN Vv ) zl’(1n*+l)(l’) f(fl( ) *t? N(J))] l b
wheleP(m = {V:V in P(m*), w(V)< d} (if any).

Now, suppose that ¥ is in P(m*)*. Consider B(m*)(V) = [p; ¢]. Suppose

that w is a positive integer >m* such that {p, ¢} € Upw{r, s}. Letting

W= {Y:Y in P(w), Bw)(Y) in D(w)[p; ¢l}, we see that Ur XSV and
we have that

ZJ‘?“’ zl’(“’) [p;al |419:] = 20 ZW [£(X) <Zliv=1 war [&:() ]
ST e = V)< a.
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Thus 2[p; g] < d, so that
| Zepcatrs [HELT )y wovy Ex(V) = o HET)s ey Ex(D)] |

<Zn(m*)(p(m*>* [H(Ag, ...y Agy) — EB(nl*+1)(1’(m*+1)(l’)) (A gy ooy Agx)| < /8.

Now, if V is in P(m*) — P(m*)*, then u(V)>d, so that there are no more than l
Z clements in P(m*) — P(m*)*. Suppose that V is in P(m*) — P{m*)*. Then
w(V) — p*(V) < 1/(m*— 1), so that for J* in P(m* 4 1)(V) such that u(J*)
= max {u(J): J in P(m*+ 1)(V)}, we have that Zp(m*ﬂ)(r)_m} w() = u(V)

— pJ*) < (V) — p*(V) <1[(m*— 1), so that 37, > . einm-ps [E)] <1/
(m*—1), and therefore also

Y JET) = ETH) | =32 | S sy E49)
< 35S iy |E4T) | < 1j(m# —1).  Thereforo
| S rtty—riotye LHE(T)s weey Ev(T)) = S pssnny HE(T)s ooey Ex())]
< S mtrpimtys | HE(T)y ooy Ex(V)) = F(ElTF), vy Ex(T#))
— Zrmssnm—wsg TG s D) | < Domirsiiys [ H{E(V)s ey Ex( V)
— HETS)s oy BTN+ Zontutr-rtotrt Doptmtsnm—n |F(E(T)y oory Ex(I)) ]
< Ze[8%Z + Zc[8Z .
Therefore ¢<c/S 4 2(Z¢8Z) = ¢/8 + ¢/4 = 3¢/8, a contradiction. Therefore

Tof(&uT)y ..., En(I)) exists.
Therefore (3) implies (1), so that, finally, (1), (2) and (3) are equivalent.
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Abstract

Suppose that N is a positive integer and f is a function from R¥ inlo R, bounded on each
bounded subset of R¥. Necessary and sufficient conditions are given in order that if U is
a set, F is a field of subsets of U and {Ei}ﬁ.‘;l is a sequence of real-valued finitely additive
bounded functions with domain F, then the integral, f of(&(D), ..., Ex(I)), as a refinement-
wise limit of sums, ewist.



