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Convex Clarkson inequalities

with applications to nonlinear operators (**)

The following Hilbert space identity is well-known
(%) Q=D+l + i~ a—y]2+ Q- e[+ tly]r  (O0<t<l).

This identity, which can be regarded as a convex parallelogram law, has proven
to be very useful in the study of certain problems arising in the geometric
study of nonlinear operators acting on I, (see, for example [11]). In this note
we use Clarkson’s inequalities to derive a version of (%) for the Ip spaces, and
give an application of the resulting inequality in the study of nonlinear
semigroups.

Throughout, we assume that (X, M, u)} is a o-finite measure space and

Lp(u) (p > 1) denotes the Banach space of all functions f satisfying f 1712 dp < oo
we also assume that 1/p + 1/q = 1.

Theorem 1. Suppose 2<p << co and 1 = 27 for some integer n. Then
for @,y € Lp(u)

1)@=tz +wlp+ @ =171 — )| —yp<@— 9 [2]] + ty]].

Notice that this reduces to (%) in ease p = 2, and reduces to Clarkson’s
inequality [3]
@ }— y —y
| 7+

1 1
Lpp< 5 lole +3 lyl®
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in case t= 4. For 1 < p<2, the inequality is similar.

Theorem 2. Suppose 1L <p<2 and t = 27" for some integer n. Then
for @,y e Lp(u)

@) |@—fe |2+ @ — 1)l — Y o — gl i< (L — 0|2+ ty 2.
An almost immediate consequence of these results is the following

Theorem 3. Let K be a convexr and bounded subset of Lp. If
d=sup {|z—y|: @,y K} and r = inf{o > 0: () B(x; g) 50}, then

z2E€EE

3) (1 — 2v2)-ppgdr if 2<p < o0,

(4) (1— 20)-1pegdr f 1<p<2.

The number d defined above is the diameter of K, while the number » is
the Cebysev radius of K. It follows routinely from weak-compactness of K
and weak lower semicontinuity of the norm that there is an @ € cl (K) (called
the Cebysev Center of K) such that K C B(w; 7). In case p = 2, the above
estimates are known to be sharp [1}; we do not know if they are sharp for
P FE2.

Before stating our final result, recall that a (nonlinear) semigroup acting
on a set K is a function o: [0, co) X K — K satisfying

(5) o0, ) =2 for all @,

(6) o(s -+ t, @) = o(s, o(t, )) for all m,s, t.

In addition, o is said to be uniformly y-Lipschitzian if, for all ¢ and all z, y e I
(7 lo@t, ®) — ot y) | <yloz— 9] -

The uniformly Lipschitizian semigroups were introduced in [6], and studied
in greater detail in [4], [7] and [8].

Theorem 4. Let K be a closed, bounded and convex subset of Ip (1< P
< o) and let ¢ be a uwiformly y-Lipschitizian semigroup acting on K. Then
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there is an T in K such that o(t, T) = % for all t if

(8) 1<p<2 and y < (1 — 2+-0)=te o

(9) 2<p< oo and y< (1— 21rr)-vr,

In case p = 2, the above estimates were derived in [8] using substantially
different techniques than those we apply below; it is not known, even in the
case p = 2, whether the above estimates are sharp.

We now turn to the proofs of the above results; except for Theorem 2, we
prove only the case 2 < p << oo, the proof for 1 << p<2 being identical. We
begin with the simplest result, Theorem 3, then prove Theorem 4 which is a
refinement of the approach in Theorem 3. Finally, we derive the inequalities (1)
and (2).

Proof of Theorem 3. Let z denofe the Cebysev center of K; fix

2 = 2-» and choose sequences {z,} and {y,.} in K so that

1
{®n—2&| =7 as m — co, |(1——}»)z—}—)xz:,,,——y,,,]>r—E for all m.

Applying (1)
r? (223—1 ___1)—12(1 — Zp—l)Tp

< 1M (L — D& — Un) + Ao — Y) |+ (202 — 1)UL — > @, — 27

m—» o

< lm @ — Az —ynl?+ o —yu|? <@ — 17+ Ad”.
From this, recalling A = 27,

(14 @r-1—1)Y1 — 2—ne-D))pr <P,
Letting # — oo gives (3).

Proof of Theorem 4. We follow the general outline of [6], and so
omit some of the details. For », y € K define

r(@yy) =lim sup |ols, ) —y|, &) =r( ).

o gzt

It is readily checked that, for each , the map r(z, -) is nonexpansive and
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convex (cf. [7]) and thus weakly lower semicontinuous. From this, there is
a z(z) € K for which #(z, 2(»)) = inf {r(x, y): y € K}.

Now fix ¢> 0 and select ¢, > 0 so that |o(iy, 2(»)) — 2(»)| > d(2()) — &;
select #, > 0 so that s>1, implies |o(s, #) — 2(@)| <r(w, 2(v)) + &; thus s — 4;,>1,
implies

lo(t, 2(2)) — o(s, @) | <y |2(®) — o(s — 11, )]

<y[r(z, 2(z)) + ¢] .

Now fix 1= 2" and set m = (1 — 1)2(») + 2A0(#,, #(x)). Then, applying (1)
and the above estimates,

|m — a(s, @) |? + (2771 — 1)~14(1 — A1) [d(=(z)) — &]”
< |m— ofs, ®) |7+ (2771 — 1)"1A(1 — A771) |o(ty, 2(2)) — 2(m)|"
<(1— 2)|2(@) — ofs, ) |+ A|o(ty, 2(2)) — o(s, @) |?
<(1— A)|a(x) — o(s, @) |? -+ Ayr[r(w, 2(2)) + €]7.

Taking the limit superior as s — co gives

r(@, 2(@))? -+ (201 —1)~1 (1 — A=) [d(e(w)) — £]?

< (L — Ar(w, 2(@)? + Ayr[r(z, 2(2) + ]7.
Now we may let ¢ — 0 and, npon gathering terms, obtain,
(271 — 1)1 — A1) d(z(w)) < Aly? — 1) (2, 2(2))7 .

Dividing by 2 = 2 and letting # — oo gives
(10) d(z(@))r < (y7 — 1)(27-1— 1)1?(m, 2(z)) .
Now set « = [(y» — 1)(27~1 — 1)]¥7; then o <1 by our choice of y; also

[#() — @ | <d(@) + r(w, 2(®) <2d(x)= i—:‘z_—(x (A(w) — od())

2

d(w) — d(z(w)) .

—
<
1

— X

Since d is continuous (indeed, |d(z)— d(y)| <(1 + y)|o— y|), Carisit’s theo-
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rem [2] now implies that (%) = & for some ze K. Then, in light of (10),
A®) =0, so oft,®) >T as t-—oco. From this ofs,7) = lim o(s, o(t, T))

1+

= lim ¢(s + ¢, T), 80 ofs, ) = T for all s, completing the proof.

>0
We remark that, in [6], an estimate for y is derived using the modulus of
convexity; for p>2, this estimate is (1 - 2-7)¥r(< (1 — 202)-1/7),

Proof of Theorem 1. As we have already remarked, for n = 1 this

reduces to Gl‘ulxson s inequality for p>2; for n > 1, we proceed by induction;
setting A,= 2-

® -y

I(l - 7"714-1):1" + )"n+1y [ﬂ: !(1 "_ )‘n) _I_ )hn (”‘T“) t”

’E+7/

//\

(1—2)lelr+ 2, |

e 1 2,0 — i) |12

//\

Z’n I%[nT ;"n'rl{/v] + 7~n+1I7JI”
— (272 272(2071 — 1)1, (1 — 2879)) | — g |®
< (l - }’n+1) [a‘ lp + ;"n+1 I:’/ |1)'“ (2@——1_1)—1)'1;_*‘1(1 - 7»3.?1’) Iw —Y l;o H

completing the proof.

Proof of Theorem 2. First observe that for any numbers a, >0,
(11) (Far -+ b7y dar - Lbe.

To see this, suppose without loss of generality that 0 <b<aea, and divide
by a#; (11) is then equivalent to

o2l 4 o)< (L4 ap-t,  O<w<l.
Set f(w)= 272/ (14 47)Y?(1 4 27)7%; an elementary computation shows that

2-2p(] | gp)lp e 27

ol + a9 "1+ ar 14 o)

flw) =
Since p<yq, f'(#)>0 for 0<w<l, and thus flz)<f(1) = 1; thus

go=aln(1 | gr)ile < (1 - goyile,
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Raising both sides to the power p establishes (11). From this and Clarkson’s
inequality for 1 < p<2, we see that

r—y 1 1
o |75 e 5 fole o+ 3 Iyl

lfﬂ—H/
2

The proof of Theorem 2 can now be completed in exactly the same fashion as
Theorem 1.
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Abstract

A wversion of Clarkson’s inequalities involving convex combinations is derived. Appli-
cations to Cebysev centers and nonlinear semigroups are considered.
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