CARLO SEMPI (*)

Product topologies on the space of distribution functions (**)

1 - Introduction

Let Δ_r be the set of r-dimensional distribution functions (briefly r-d. f.'s), i.e. the family of functions $H \colon \overline{\mathbf{R}}^r \to [0,1]$, where $\overline{\mathbf{R}} = \mathbf{R} \cup \{-\infty, +\infty\}$ such that (i) $H(x_1, x_2, ..., x_r) = 0$ if $x_i = -\infty$ for at least one index i, (ii) $H(+\infty, +\infty, ..., +\infty) = 1$, (iii) $V_H(R) \ge 0$ for every rectangle $R = \prod_{i=1}^r]a_i, b_i]$ with $a_i \leqslant b_i$ (i = 1, 2, ..., r), where $V_H(R) := \sum \operatorname{sign}(c)H(c)$, the sum being taken over all the vertices c of R and where $\operatorname{sign}(c) = 1$ or -1 according as to whether $c_i = a_i$ for an even or an odd number of indeces.

In addition, a r-d. f. is usually assumed to be either left- or right-continuous in each variable. Since such a property will not be required in the sequel of the present note, we shall not make the choice just mentioned.

The (one-dimensional) margins (or marginal d.f.'s) of $H \in \Delta_r$ are defined by $F_i(x_i) := H(+\infty, +\infty, ..., +\infty, x_i, +\infty, ..., +\infty)$ (i=1, 2, ..., r). Obviously one has $F_i \in \Delta$ (i=1, 2, ..., r) (Δ is the set of l-d.f.'s, see [6], [8], [7]). Thus a map $M_r : \Delta_r \to \Delta \times \Delta \times ... \times \Delta$ is defined by $M_r(H) = (F_1, F_2, ..., F_r)$.

We shall denote by Δ_r^0 the subset of Δ_r formed by the d.f.'s of those random vectors $(X_1, X_2, ..., X_r)$ the components of which are a.s. finite random variables, viz. $P[|X_i| = +\infty] = 0$ (i = 1, 2, ..., r). If $H \in \Delta_r^0$, then proper-

^(*) Indirizzo: Dipartimento di Matematica, Università, C.P. 193, 73100 Lecce, Italy.

^(**) Ricerca eseguita nell'ambito del G.N.A.F.A. (C.N.R.) e con fondi M.P.I. . Ricevuto: 24-V-1982.

ties (i) and (ii) above are replaced respectively by

(i)'
$$\lim_{x_t \to -\infty} H(x_1, x_2, ..., x_r) = 0 \quad (i = 1, 2, ..., r),$$

$$\label{eq:harmonic_limit} (\mathrm{ii})' \quad \lim_{\substack{\min{(x_1,\,x_2,\ldots,x_r)} \to +\infty}} \quad H(x_1,\,x_2,\,\ldots,\,x_r) = 1 \;.$$

A sequence $\{H_n \colon n=1,2,\ldots\} \subset \Delta_r$ is said to converge weakly to $H \in \Delta_r$ iff $\lim H_n(x_1,x_2,\ldots,x_r) = H(x_1,x_2,\ldots,x_r)$ at every point (x_1,x_2,\ldots,x_r) of continuity for H; one then writes $H_n \to H$. If $H \in \Delta_r$ let c_H^r denote the set of continuity points of H; if r=1, i.e., if $F \in \Delta$, we shall simply write c_F . The properties of c_H^r are given, e.g., in [10] th. 2.2.3.

The set Δ can be metrized either by the metric d_S introduced by Sibley [8] and modified by Schweizer [5] or by the metric d_K introduced by the present author ([7]) after Kingman ([2], section 12.1). These metrics induce the same convergence in Δ , viz. $d_S(F_n, F) \to 0$ or $d_K(F_n, F) \to 0$ iff $F_n(x) \to F(x)$ at every $x \in c_F$. Both metric spaces (Δ, d_S) and (Δ, d_K) are compact and hence complete. The subset $\Delta^0 \subset \Delta$ is a metric space not only with respect to the restriction to Δ^0 of either d_S or d_K but also with respect to the Lévy metric d_L (see, e.g. [3] or [4]). The metric space (Δ^0, d_L) is complete [4] but not compact.

It is the aim of the present note to investigate the connexion between weak convergence in Δ_r and the product topology on $\Delta \times \Delta \times ... \times \Delta$ induced by the topology of the metric d_s or d_k on Δ .

2 - The case r=2

Theorem 1. Let $H_n \in \Delta_2$ $(n = 1, 2, ..., \infty)$ be continuous on $\overline{\mathbf{R}}^2$ (in particular, hence, $H_n \in \Delta_2^0$, $n = 1, 2, ..., \infty$). If $H_n \to H_\infty$, then $M_2(H_n) \to M_2(H_\infty)$ in the sense of the convergence induced by the product topology on $\Delta \times \Delta$, i.e. if $M_2(H_n) = (F_1^{(n)}, F_2^{(n)})$ $(n = 1, 2, ..., \infty)$, then $F_1^{(n)} \to F_1^{(\infty)}$ and $F_1^{(n)} \to F_2^{(\infty)}$.

Proof. Since all the d. f.'s in question are continuous, weak convergence means pointwise convergence on $\overline{\mathbf{R}}^2$. Thus $F_1^{(n)}(x) = H_n(x, +\infty) \to H_{\infty}(x, +\infty) = F_1^{(n)}(x)$ for $x \in \overline{\mathbf{R}}$. Likewise for $F_2^{(n)}$.

One cannot eliminate the requirement that H_n be continuous as is shown by the following

Example 1. Let $\varepsilon_a \in \Delta$ be defined, for $a \in \overline{R}$, by

$$arepsilon_a(x) = \left\langle egin{array}{ll} 0 & & ext{if} & x < a \ & & & \ 1 & & ext{if} & x > a \end{array}
ight.,$$

the value of ε_a at x = a being fixed by the choice of left- or right-continuity; $\varepsilon_{\infty}(x) = 0$ for $x \in \mathbb{R} \cup \{-\infty\}$, $\varepsilon_{\infty}(+\infty) = 1$.

Let $F^{(n)} = \varepsilon_n$ (n = 1, 2, ...), $F^{(\infty)} = \varepsilon_0/2 + \varepsilon_\infty/2$, $G^{(n)} = \varepsilon_n/2 + \varepsilon_\infty/2$ (n = 1, 2, ...), $G^{(\infty)} = \varepsilon_\infty$; obviously $F^{(n)} \in A$ and $G^{(n)} \in A$ $(n = 1, 2, ..., \infty)$. Define the sequence $\{H_n : n = 1, 2, ..., \infty\} \in A_2$ by $H_n(x, y) = F^{(n)}(x)G^{(n)}(y)$ $(n = 1, 2, ..., \infty)$. H_∞ is continuous on $\overline{\mathbf{R}}^2$, since $H_\infty(x, y) = 0$ for $(x, y) \in \mathbf{R}^2$, but not on \mathbf{R}^2 , for $F_1^{(\infty)}(x) = H_\infty(x, +\infty) = F^{(\infty)}(x)$ and $F_2^{(\infty)}(y) = H_\infty(+\infty, y) = G^{(\infty)}(y)$. At every point $(x, y) \in \mathbf{R}^2$ one has $H_n(x, y) = \varepsilon_n(x)\varepsilon_n(y)/2$ so that $H_n \to 0$ on $\overline{\mathbf{R}}^2$ as n goes to $+\infty$. Thus H_n converges weakly to H_∞ . However, since $M_2(H_n) = (F^{(n)}, G^{(n)})$, $F^{(n)}$ does not converge weakly to $F^{(\infty)}$. Indeed $F^{(\infty)}$ is continuous at every real point x > 0, where $F^{(\infty)}(x) = 1/2$, but $F^{(n)}(x) = \varepsilon_n(x)$ that goes to zero as n tends to $+\infty$.

The example above also shows that if $H \in \Delta_2$ and $M_2(H) = (F, G)$ then the inclusion $c_F \times c_G \subset c_H^2$ may be strict. To see this take $H = H_{\infty}$. Then every point (0, y) with $y \in \mathbb{R}$ belongs to $c_{H_{\infty}}^2$ but not to $c_F(\infty) \times c_G(\infty)$.

In the other direction, let (F, G) be given in $\Delta \times \Delta$. As is well-known (see, e.g., [1]), F and G determine a class $\Gamma(F, G) \subset \Delta_2$ of 2-d. f.'s of which they are the margins. $\Gamma(F, G) = M_2^{-1}(F, G)$ is called the *Fréchet class of* F and G. The following results will be needed (see [9]₂ or [11]).

Theorem 2. (Sklar) Let $H \in \Delta_2$ and let F and G be its margins. Then there is a (generally non-unique) function $C: [0, 1] \times [0, 1] \to [0, 1]$ called (2-)copula such that H(x, y) = C[F(x), G(x)] ($(x, y) \in \overline{\mathbb{R}}^2$). The function C has, among others, the following properties

(1)
$$C(s,1) = s$$
, $C(1,t) = t$ $(s,t \in [0,1])$;

(2)
$$C(s,0) = C(0,t) = 0$$
 $(s, t \in [0,1]);$

$$|C(s_1,t_1)-C(s_2,t_2)|\leqslant |s_1-s_2|+|t_1-t_2| \qquad (s_1,s_2,t_1,t_2\in[0,1])$$

and therefore is uniformly continuous on $[0, 1] \times [0, 1]$;

(4)
$$\max(s+t-1,0) \leqslant C(s,t) \leqslant \min(s,t)$$
 $(s,t) \in [0,1]$,

and moreover the functions C' and C'', with $C'(s,t) := \max(s+t-1,0)$ and $C''(s,t) = \min(s,t)$ are themselves copulae.

[4]

Copulae were introduced by Sklar ([9]) in 1959. For an exhaustive list of their properties one should consult [9]₂. Theorem 2 presents only those results that will be needed for the purpose of the work here reported.

One can now prove

Theorem 3. Let $F_n
ightharpoonup F_\infty$ and $G_n
ightharpoonup G_\infty$ with F_n , $G_n \in \Delta$ $(n=1,2,...,\infty)$, i.e. $d(F_n, F_\infty)
ightharpoonup 0$ and $d(G_n, G_\infty)
ightharpoonup 0$ where either $d=d_S$ or $d=d_K$. Then, for every copula C, one has $C(F_n, G_n)
ightharpoonup C(F_\infty, G_\infty)$ in the sense of weak convergence on Δ_2 .

Proof. $C(F_n, G_n)$ converges pointwise to $C(F_\infty, G_\infty)$ on $c_{F_\infty} \times c_{G_\infty}$; indeed one has, in view of (3)

$$\big|\,C[F_n(x),\,G_n(y)]-C[F_\infty(x),\,G_\infty(y)]\,\big|\leqslant \big|\,F_n(x)-F_\infty(x)\,\big|+\big|\,G_n(y)-G_\infty(y)\,\big|\,.$$

But $\overline{R}^2 \supset \overline{c_{F_{\infty}} \times c_{G_{\infty}}} = \overline{c}_{F_{\infty}} \times \overline{c}_{G_{\infty}} = \overline{R}^2$, so that $c_{F_{\infty}} \times c_{G_{\infty}}$ is dense in \overline{R}^2 ; the assertion is now a consequence of the equivalence of weak convergence with pointwise convergence on a dense set (see, e.g., [10]).

If a sequence $\{(F_n, G_n): n = 1, 2, ..., \infty)\} \subset \Delta \times \Delta$ is given, then choosing a copula C implies assigning a sequence $\{H_n: n = 1, 2, ..., \infty\} \subset \Delta_2$ such that $H_n = C(F_n, G_n)$ $(n = 1, 2, ..., \infty)$. Theorem 3 thus states that for the sequence $\{H_n\}$ in Δ_2 that corresponds to the given sequence $\{(F_n, G_n)\}$ in $\Delta \times \Delta$ and to the copula C chosen, one has $H_n \to H_\infty$ and that this holds for every possible choice of C.

Theorems 1 and 3 continue to hold if one replaces Δ_2 by Δ_2^0 and Δ by Δ^0 ; formally

Theorem 4. (a) Let $H_n \in \Delta_2^0$ $(n=1,2,...,\infty)$ be continuous on \mathbb{R}^2 . If $H_n \to H_\infty$ then $M_2(H_n) \to M_2(H_\infty)$ in the sense of the product topology on $\Delta^0 \times \Delta^0$, viz. if $M_2(H_n) = (F_1^{(n)}, F_2^{(n)})$ $(n=1,2,...,\infty)$ then $F_k^{(n)} \to F_k^{(\infty)}$ (k=1,2). (b) If $F_n \to F_\infty$ and $G_n \to G_\infty$ with $F_n, G_n \in \Delta^0$ $(n=1,2,...,\infty)$, then for every copula C one has $C(F_n, G_n) \to C(F_\infty, G_\infty)$ in the sense of weak convergence on Δ_2^0 .

Proof. The proof of (a) is identical with that of Theorem 1, whilst the proof of (b) is an immediate consequence of the following fact: If $(F, G) \in \Delta^0 \times \Delta^0$ then $C(F, G) \in \Delta^0_2$ for every copula C. This follows from the continuity of C and from (1) and (2). In fact, as $C(F, G) \in \Delta_2$, one has only to

check that (i)' and (ii)' are verified, as indeed they are

$$\lim_{x \to -\infty} C[F(x), G(y)] = C[0, G(y)] = 0 , \quad \lim_{y \to -\infty} C[F(x), G(y)] = C[F(x), 0] = 0 ,$$

$$\lim_{\min(y,y) \to +\infty} C[F(x), G(y)] = C(1, 1) = 1 .$$

Only partially do Theorems 2 and 4(b) answer the question of whether, for a given sequence $\{H_n\} \subset \Delta_2$, the weak convergence of both sequences of marginals implies the weak convergence of $\{H_n\}$. By theorems 2 and 4(b) this is clearly the case if $H_n = C(F_1^{(n)}, F_2^{(n)})$ with the same copula for n=1, $2, \ldots, \infty$. As Example 2 further below will show, the answer is, in general, negative, viz. $\{F_1^{(n)}\}$ and $\{F_2^{(n)}\}$ may converge in Δ whilst $\{H_n = C_n(F_1^{(n)}, F_2^{(n)})\}$ does not converge in Δ_2 . However, convergence of $\{H_n = C_n(F_1^{(n)}, F_2^{(n)})\}$ obtains under stronger assumptions on the limits $F_1^{(\infty)}$ and $F_2^{(\infty)}$.

Theorem 5. Let
$$\{H_n: n=1, 2, ..., \infty\} \subset \Delta_2$$
 and $M_2(H_n) = (F_1^{(n)}, F_2^{(n)})$ $(n=1, 2, ..., \infty)$. If $F_1^{(\infty)} = \varepsilon_a$ and $F_2^{(\infty)} = \varepsilon_b$ for some $a, b \in \mathbb{R}$, then $H_n \rightharpoonup H_\infty$.

Proof. There exist copulae C_n $(n=1, 2, ..., \infty)$ such that $H_n = C_n(F_1^{(n)}, F_2^{(n)})$ Then

$$\begin{split} |H_n(x,y)-H_\infty(x,y)| &= |C_n[F_1^{(n)}(x),F_2^{(n)}(y)] - C_\infty[\varepsilon_a(x),\varepsilon_b(y)]| \\ & \leqslant |C_n[F_1^{(n)}(x),F_2^{(n)}(y)] - C_\infty[F_1^{(n)}(x),F_2^{(n)}(y)]| \\ & + |C_\infty[F_1^{(n)}(x),F_2^{(n)}(y)] - C_\infty[\varepsilon_a(x),\varepsilon_b(y)]|. \end{split}$$

Now, because of (3), one has

$$\big|\,C_{\infty}[F_1^{(n)}(x),F_2^{(n)}(y)]-C_{\infty}[\varepsilon_a(x),\varepsilon_b(y)]\,\big|\leqslant |F_1^{(n)}(x)-\varepsilon_a(x)\,|+|F_2^{(n)}(y)-\varepsilon_b(y)\,|$$

and this tends to zero as n tends to infinity if $x \neq a$ and $y \neq b$. Also, on account of (4),

$$\begin{split} &|C_n[F_1^{(n)}(x),F_2^{(n)}(y)]-C_\infty[F_1^{(n)}(x),F_2^{(n)}(y)]|\\ \leqslant &\min\left\{F_1^{(n)}(x),F_2^{(n)}(y)\right\}-\max\left\{F_1^{(n)}(x)+F_2^{(n)}(y)-1,0\right\}. \end{split}$$

But

430

(5)
$$\lim_{n\to\infty} \min \left\{ F_1^{(n)}(x), F_2^{(n)}(y) \right\} = \min \left\{ \varepsilon_a(x), \varepsilon_b(y) \right\} \qquad (x \neq a, y \neq b),$$

(6)
$$\lim_{n\to\infty} \max \{F_1^{(n)}(x) + F_2^{(n)}(y) - 1, 0\} = \max \{\varepsilon_a(x) + \varepsilon_b(y) - 1, 0\} \quad (x \neq a, y \neq b).$$

The limits (5) and (6) are equal, as is immediate to check directly, or by recourse to Theorem 1 (iii) in [1]. This proves the assertion.

Example 2. Let $\{\lambda_n : n = 1, 2, ...\}$ be a real sequence which converges to $\lambda > 0$ (e.g., $\lambda_n = \lambda - 1/n$). Let $F_k^{(n)} \in \mathcal{A}$ (k = 1, 2; n = 1, 2, ...) be defined by

$$F_1^{(n)}(t) = F_2^{(n)}(t) = \begin{cases} 0 & \text{if } t < 0 \\ \\ 1 - \exp(-\lambda_n t) & \text{if } t > 0 \end{cases}.$$

Consider the 2-d.f. $H_n \in \Gamma(F_1^{(n)}, F_2^{(n)})$ defined by

$$H_{2k}(x,y) = \max \{F_1^{(2k)}(x) + F_2^{(2k)}(y) - 1, 0\}$$
 if $n = 2k$

and by
$$H_{2k+1}(x,y) = \min\{F_1^{(2k+1)}(x), F_2^{(2k+1)}(y)\}$$
 if $n = 2k + 1$.

The sequence $\{H_n\}$ does not converge weakly. In fact, for instance, $H_{2k}(x,y)=0$ on the square $[0, \ln 2/\lambda] \times [0, \ln 2/\lambda]$ on which $H_{2k+1}(x,y) \to 1 - \exp\{-\lambda \min(x,y)\}$ as k tends to infinity.

3 - Extensions and conclusion

With the obvious modifications to both statements and proofs, theorems 1, 3, 4 and 5, as well as Example 1 (but not Example 2) continue to hold for every r > 2. In Theorem 2, (1) and (2) read respectively

$$C(1, 1, ..., 1, s, 1, ..., 1) = s$$
 $(i = 1, 2, ..., r)$,

$$C(s_1, s_2, ..., s_r) = 0$$
 if $s_i = 0$ for at least an index i .

The inequalities (4) become

(7)
$$\max(s_1 + s_2 + ... + s_r - r + 1, 0) \leqslant C(s_1, s_2, ..., s_r) \leqslant \min(s_1, s_2, ..., s_r);$$

however the lower bound is *not* a r-copula if r > 3, although (7) provides the best possible lower bound ([6]). For the same reason one has to modify the sequence $\{H_{2k}\}$ in Example 2; it suffices to take

$$H_{2k}(x_1, x_2, ..., x_r) = \prod_{i=1}^r F_i^{(2k)}(x_i)$$
.

The gist of theorems 1, 3, 4, 5 and their unstated analogues for r > 2 is that the concept of weak convergence in Δ_r , for r > 1, is slightly more general than the concept of convergence in the product topology in $\Delta \times \Delta \times ... \times \Delta$.

References

- [1] G. Dall'Aglio, Fréchet classes and compatibility of distribution functions, Symposia Mathematica 9 (1972), 131-150.
- [2] J. F. C. Kingman and S. J. Taylor, Introduction to measure and probability, Cambridge University Press, Cambridge 1966.
- [3] M. Loève, *Probability theory*, Springer-Verlag, New York Heidelberg Berlin 1977.
- [4] E. Lukacs, Stochastic convergence, Academic Press, New York London 1975.
- [5] B. Schweizer, Multiplication on the space of distribution functions, Aequationes Math. 12 (1975), 156-183.
- [6] B. Schweizer and A. Sklar, Probabilistic metric spaces, Elsevier, North-Holland, New York, 1982.
- [7] C Sempi, On the space of distribution functions, Riv. Mat. Univ. Parma (4) 8 (1982), 243-250.
- [8] D. A. Sibley, A Metric for Weak Convergence of Distribution Functions, Rocky Mountain J. Math. 1 (1971), 427-430.
- [9] A. Sklar: [•]₁ Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statistique Univ. Paris 8 (1959), 229-231; [•]₂ Random variables, joint distribution functions and copulas, Kybernetika 9 (1973), 449-460
- [10] H. Tucker, A graduate course in probability, Academic Press, New York, London 1967.
- [11] E. F. Wolff, Measures of dependence derived from copulas, Ph. D. thesis, University of Massachusetts 1977.

Sommario

Si studiano i rapporti tra la convergenza debole in Δ_2 , lo spazio delle funzioni di ripartizione doppie, e la convergenza nella topologia prodotto indotta in $\Delta \times \Delta$ dalla topologia della metrica nello spazio delle funzioni di ripartizione semplici Δ . Si mostra che il primo concetto è leggermente più generale del secondo.

* * *