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CARLO SEMPI (¥*)

Product topologies

on the space of distribution functions (**)

1 - Introduction

Let A4, be the set of r-dimensional distribution functions (briefly »-d. £.’s),
i.e. the family of functions H: R — [0, 1], where R = R U {— oo, + oo} such
that (i) H(zy, @4y ..., ®,) = 0 if @, = — oo for at least one index ¢, (ii) H(+ oo,
+ 00y ..., +00) =1, (iii) Vy(R) > 0 for every rectangle k= H}ai, b;] with

i=1
a;<b; (1=1,2,..,r), where Vy(R):=  sign(c)H(c), the sum being taken
over all the vertices ¢ of B and where sign (¢) =1 or —1 according as to
whether ¢; = «, for an even or an odd number of indeces.

In addition, a r-d. f. is usually assumed to be either left- or right-continuous
in each variable. Since such a property will not be required in the sequel of
the present note, we shall not make the choice just mentioned.

The (one-dimensional) margins (or marginal d.f.’s) of H € 4, are defined
by Fx;):= H(+o0, +00,..., +00,;, +00,..., +00) (i=1,2,...,7). Obvio-
usly one has F,ed (i=1,2,...,r) (4 is the set of I-d.f.’s, see [6], [8], [7]).
Thus a map M,: 4, > AxAx...x4 is defined by M (H) = (Fy, F., ..., F,).

We shall denote by 4° the subset of 4, formed by the d.f.’s of those ran-
dom vectors (X, X,, ..., X,) the components of which are a.s. finite random
variables, viz. P[|X;|= 4+ c0]=0 (i=1,2,...,7). If He 4], then proper-
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ties (i) and (ii) above are replaced respectively by

(i)’ lim H(wy, @y ey @) =0 (i=1,2,...,7),
2y—>—00
(ii)’ lim H(wyy @y ey ) =1
min (g, 2as.szp )0

A sequence {H,: n=1,2,..}c 4, is said to converge weakly to H e 4, ift
im H (2, 25, ..., ) = H{zy, 70, vy &) at every point (wy, %, ..., x,) of con-
tinuity for H; one then writes H, — H. 1t H e 4, let ¢, denote the set of
continnity points of H; if » = 1, i.e., if F € 4, we shall simply write ¢z. The
properties of ¢, are given, e.g., in [10] th. 2.2.3,

The set 4 can be metrized either by the metrie dg introduced by Sibley [8]
and modified by Schweizer [5] or by the metric dy introduced by the present
author ([7]) after Kingman ([2], section 12.1). These metries induce the same
convergence in A, viz. dy(I',, F) -0 or dg(¥,,F)—0 iff F,(x) = F(z) at
every « € ¢,. Both metric spaces (4, ds) and (4, dx) are compact and hence
complete. The subset 4°c 4 is a metric space not only with respect to the
restriction to A° of either dy or d; but also with respeet to the Lévy metrie d,
(see, e.g. [3] or [4]). The metric space (4° d,) is complete [4] but not com-
pact.

It is the aim of the present note to investigate the connexion between
weak convergence in A, and the produet topology on 4 x4 X... x4 induced
by the topology of the metric ds or dx on 4.

2 « The case r = 2

Theorem 1. Let H,ed, (n =1,2,...,00) be continuous on R* (in par-
ticular, hence, H,e A}, n =1,2,...,00). If H, — He, then M,(H,) ~ M,(Hc)
in the sense of the convergence induced by the product topology on A x4, i.e. if

My(H,) = (F¢, F®) (n = 1,2, ..., 00), then F —F) and F® — F),

Proof. Since all the d.£.’s in question are continuous, weak convergence
means pointwise convergence on R2. Thus F(l")(m) = H, (v, +00) = H(x, +00)
= F{*)(z) for » € R. Likewise for F{.

One cannot eliminate the requirement that H, be continuous as is shown
by the following
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Example 1. Let g, €4 be defined, for « € R, by

0 if x<a

eulm) =

1 if z>a),

the value of g, at = @ being fixed by the choice of left- or right-continuity;
to(®) = 0 for 1 e RU {— o0}, &xn(+ c0) = 1.

Let B =g, (n=1,2,...), F® = g2 + £,/2, G = ¢,/2 + e,/2 (n =1,
2,...), G = g,; obviously Fmed and G™ed (n=1,2,..,c0). De-
fine the sequence {H,: n=1,2,...,00}cd, by H,(x,y)= F™(x)F"(y)
(n=1,2,..,00). Hy is continuous on R?, since H,(z,y)= 0 for (z,y) € R?,
but not on R?, for F{=)z) = He(z, + co0) = F(x) and F{™(y) = H(+ oo, ¥)
= G™)(y). At every point (2,y) e R? one has H,(x,y) = e.(®)e.(y)/2 so that
H, -0 on R® as n goes to -+ co. Thus H, converges weakly to H,. How-
ever, sinee M,(H,) = (Fm, @m), F does not converge weakly to . Indeed
I ig continuous at every real point « > 0, where F©}(x) = 1/2, but F"(x)
= g,(z) that goes to zero as n tends to + co.

The example above also shows that if He d, and M,(H)= (F, &) then
the inelusion e XcqC ¢, may be striet. To see this take H = H,. Then every
point (0, y) with y € R belongs to ¢}  but not to cx(co0) X (o).

In the other direction, let (F, @) be given in dx4. As is well-known
(see, e.g., [1]), 7 and @ determine a class I'(F, @) c 4, of 2-d. £.’s of which they
arve the marging. I'(F, G)=M*(F, G) is called the Fréchet class of F and G.
The following results will be needed (sce [9], or [11]).

Theorem 2. (Sklar) Let He A, and let I' and G be its margins. Then
there s a (generally non-unigue) function C: [0, 1] x{0, 1] — [0, 1] ealled (2-)copula
such that H(z,y) = C[F(z), G(®)] ((z,y)€R?). The function C has, among
others, the following properties

(1) Cs, 1y =139, CQ,t)=t (s,te[0,1]);
(2) C(s,0) = C(0, 1) = 0 (s,te[0,1]);
(3) [C(s1, 1) — C(say L) | < | 81— 8o |+ |61 — 1] (Suszytlytae[();l])

and therefore is uniformly continuous on [0,1]x[0,1];

(4 max (s +t—1, 0) << C(s, ) <min (s, 1) (s,te0,1]),



428 C. SEMPI [4]

and moreover the functions ¢’ and O, with ('(s,t) := max (s + ¢ —1,0) and
C’(s,t) = min (s, t) are themselves copulae.

Copulae were introduced by Sklar ([9]) in 1959. For an exhaustive list of
their properties one should consult [9],. Theorem 2 presents only those results
that will be needed for the purpose of the work here reported.

One can now prove

Theorem 3. Let F, — Fiand G, — G with F,, G, e 4 (n = 1,2, ..., c0),
ie. d(F,, Fy) -0 and d(G,, Gy) — 0 where either d = dg or d = di. Then,
for every copula C, one has C(F,, G,) - CO(F,, G) in the sense of weak con-
vergence on A,.

Proof. C(F,,@&,) converges pointwise to C(Fe, Gw) on ¢r  Xcg ; indeed
one has, in view of (3)

l C[Fn(w)7 Gn(y)] - C[Fm(x)7 Goo(?/)] l < IF1l(m) _‘Foo('/'v) I + iGn(?/) - Goo(y) l'

But R®Dc¢p Xceg = Cp X Cc = R? 80 that ¢x_Xcg  is dense in R?; the as-
sertion is now a consequence of the equivalence of weak convergence with
pointwise convergence on a dense set (see, e.g., [10]).

If a sequence {(F,, G,): n=1,2,...,00)}c 4X4 is given, then choosing
a copula C implies assigning a sequence {H,: n = 1,2, ..., oo} C 4, such that
H,=CF,, &) (n=1,2,...,00). Theorem 3 thus states that for the se-
quence {H,} in 4, that corresponds to the given sequence {(F,, G,)} in 4x4
and to the ecopula ¢ chosen, one has H, — H, and that this holds for every
possible choice of C.

Theorems 1 and 3 continue to hold if one replaces 4, by 42 and 4 by A°;
formally

Theorem 4. (a) Let Hye d) (n=1,2,...,00) be continuous on R If
H, — H, then M,(H,) — M,(H,) in the sense of the product topology on A°x A4°,
viz. if M,(H,) = (F®, F®) (n = 1,2, ..., 0o) then F® — F{™) (k= 1,2). (b) If
P, —F, and G, — G, with F,, G, 4° (n=1,2,...,00), then for every co-
pula C one has C(F,, @,) — C(Fy, Q) in the sense of weak convergence onldg.

Proof. The proof of (a) is identical with that of Theorem 1, whilst the
proof of (b) is an immediate consequence of the following fact: If (I, &)
€ 4°Xx 4° then C(F, &) e 4] for every copula (. This follows from the con-
tinuity of C and from (1) and (2). In fact, as C{(F, @) € 4,, one has only to
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check that (i)’ and (ii)’ are verified, as indeed they are

lim C[F(a), G(y)] = C[0, G(y)] =0, lim O[F(x), G(y)] = C[F(),0] =0,

Zr—0 Yy

lim Ol (z), Gy)] = C(1,1) = 1.

min (g,y) >+

Only partially do Theorems 2 and 4(b) answer the question of whether,
for a given sequence {H,}cC 4,, the weak convergence of both sequences of
marginals implies the weak convergence of {H,}. By theorems 2 and 4(b)
this is clearly the case if H,= C(F®™, F") with the same copula for n=1,
2y...,00. As Example 2 further below will show, the answer is, in general,
negative, viz. {F®} and {FP} may converge in 4 whilst {H,=C,(F", F{M)
does not converge in A,. However, convergence of {H, = C,(F™, Fi) ob-
tains under stronger assumptions on the limits F(* and F{.

Theorem 5. Let {H,:n=1,2,..,00)cd, and M,(H,)= (F"™, F")
(n=1,2,..,00). If F{*'= ¢, and F{*) = ¢, for some a,b e R, then H, — H,.

Proof. There exist copulae 0, (n=1, 2, ..., co) such that H,=C,(F@, F™)
Then

| Ho(@, §) — Hol(@, y) | = | CulFP (@), PP (5)] — Colea(®), (9)]]
< | CLFP (@), P (y)] — Col T (@), T ()] |
+ | O P (), ) ()] — Coolea(), &(y)] ]
Now, because of (3), one has
| Co[ T (@), ()] — Owlea(®@), e(i)]] < | P (@) — ea(@) | + | TP (y) — &) |

and this tends to zero as n tends to infinity if 54 ¢ and y = b. Also, on ac-
count of (4),

| C[F (@), P (y)] — Col FS (), & (y)] ]

<min {F¥ (@), FP(y)} — max {FO(z) + FP(y) —1, 0} .
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But

(3) lim min {F®(x), F&(y)} = min {e.(2), &(y)} (@ 5% a, y # D),

N>

(6) lim max {F¢(z)+-FO(y) —1, 0}=max {e,(@)+ea(y) —1,0} (v#a,y5#Db).

n—>0

The limits (3) and (6) are equal, as is immediate to check directly, or by
recourse to Theorem 1 (iii) in [1]. This proves the assertion.

Example 2. Let {Ad,:n=1,2,.

..} be a real sequence which converges
to 4> 0 (e.g.y Ay = A—1/n). Let F™Me d (k

=1,2;n=1,2,..) be defined by

0 if t<<0
PO = POty =

l—exp(—4,f) ift>0.

Consider the 2-d.f. H, e ['(FM, FP) defined by

Hy(w, y) = max {FE(z) + F(y) —1, 0} it n =2k
and by Hyppo(@, y) = min {F(z), FE(y)} if 2 = 2k -+ 1.
The sequence {H,} does not converge weakly. In fact, for instance, Hy (2, y)=0

on the square [0,1n 2/A]x[0,1n 2/4] on which H,ppy (%, y) =1 — exp {— A min
(@, y)} as k tends to infinity.

3 « Extensions and conclusion
With the obvious modifications to both statements and proofs, theorems 1,
3, 4 and 5, as well as Example 1 (but not Example 2) continue to hold for
every > 2. In Theorem 2, (1) and (2) read respectively
0,1, .., 1,81, ., ) =8  (1=1,2,...,7),
C(sy,y 85y -y 8,) =0 if s, = 0 for at least an index ¢.

The inequalities (4) become

() max(s;+ 8+ ... + 8 —1 +1,0)< 08y, 83y cuey 8) < MiN ($3, S2y -5 87)
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however the lower bound is net a »-copula if 7> 3, although (7) provides the
best possible lower bound ([6]). For the same reason one has to modify the
sequence {H,,} in Example 2; it suffices to take

Hop(y, gy oony ) = [ F(a,) .

i=1

The gist of theorems 1, 3, 4, 5 and their unstated analogues for r > 2 is
that the concept of weak convergence in A,, for » > 1, is slightly more general
than the concept of convergence in the product topology in 4x4dx...xd4d.
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Sommario

8i studiano i rapporti tra la convergenza debole in A,, lo spazio delle funzioni di ripar-
tizione doppie, e la convergenza nella topologia prodotto indoita in A XA dalla topologia
della metrica nello spazio delle funzioni di ripartizione semplici 4. Si mostra che il primo
concetto & leggermente pilt generale del secondo.
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