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PrETRO AIEN A (¥)

On Calkin’s theorem (**)

T. Kato, in his treatment of perturbation theory ([4]), has introduced the
concept of a strictly singular operator. A linear operator 4:F — F, where
I and F are normed spaces, is strictly singular if, for every infinite dimensional
closed subspace M c I the restriction of 4 to M is not a linear homeomorphism.

If F and F are Banach spaces (as we will suppose throughout this paper)
the strictly singular operators form a closed subspace S(F, F') of the space
Z(E, F') of all bounded linear operators. Moreover & (F, F') contains the closed
subspace 2 (E, F) of all compact operators and when ¥ = F, S (E) = S (¥, K)
is a closed two-sided ideal of #(H, E) = #(E) .

Generally the conjugate A': F'— E' of a strictly singular operator 4 need
not be strictly singular. To relate the strict singularity of 4 to that of A’
and viceversa, R. J. Whitley ([8]) has introduced the following concepts.

A normed linear space E is subprojective, if given any closed infinite dimen-
sional subspace M of E, there exists a closed infinite dimensional subspace N
of M and a bounded projection from F onto N.

A normed linear space ¥ is superprojective if, given any closed subspace M
with infinite codimension, there exists a closed subspace N containing M,
where N has infinite codimension, and a bounded projection from # onto N.

Let us denote by .#(F, F') the set of all bounded linear operators 4: F — I
having the property that every closed subspace contained in the range A(F)
of A is finite dimensional. In [2] Calkin has shown that if H is a separable
Hilbert space, the set #(H) = .#(H, H) is an ideal and coincides with

A (H) = SF(H) = the unique closed ideal of Z(H) .

(*) Indirizzo: Istituto di Matematica, Universitd, Via Archirafi 34, 90123 Palermo,
Ttaly.
(**) Lavoro eseguito nell’'ambito del G.N.A.F.A. (C.N.R.). — Ricevuto: 17-V-1982.
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In a non separable Hilbert space the equality 7 (H) = S(H) = 4 (H) is still
true, although in this case 2 (H) is not the unique closed ideal. In [3] (see
§ 4.3) an example shows that generally, for an arbitrary Banach space E,
we have J(E) % ().

In this brief note we extend Calkin’s theorem as follows.

Theorem. Let B be reflexive, F any Banach space. If I is also super-
projective together with all its closed subspaces, then M#(E, F) = S (1, F).

Proof. Let 4 e #(H, F), and N a closed subspace of E. If the restriction
Ay, of 4 on N is an homeomorphism, 4 ,(¥) is a closed subspace of the range
A(E), thus dimension of 4 (N) = dimension of ¥ << 4+ oo i.e. 4 is a strictly
singular operator.

Conversely let .4 be strictly singular and M a closed subspace of A(H). Let

U= {rek: daec M}

and denote by A, the restriction of 4 on U. Since U is closed, directly from
the definition of strict singularity, it follows that the operator Ay: U -— M
is still strietly singular. Moreover U is reflexive and by hypothesis is a super-
projective Banach space. Then by corollary 4.7 of [8] we have that the dual
space U’ of U is a subprojective Banach space and by corollary 2.3 of [8]
the conjugate of Ay, A,: M'— U’ is also strictly singular. Since A,(U) =M
we have that 4y is a bounded surjective operator, hence its conjugate A,
must be one-to-one. By the Open Mapping theorem it follows that A, has
a bounded inverse, i.e. the operator A'U is & linear homeomorphism of M’ onto
some subspace of U’. Then by the strict singularity of A, we must have
dim M'< 4 co and from that dim M << + oo i.e. AeH(E,F).

Since any Hilbert space H is reflexive and superprojective together with
all its closed subspaces, we have

Corollary I. If H is a Hilbert space, F' any Banach space, then #(H,F)
= S(H, F).

A class of Banach spaces which are reflexive and superprojective together
with any closed subspace is given by the class of %,-spaces treated in [6].
Such Banach spaces F are characterized by the fact that they are isomorphic
to some Hilbert space, or equivalently (see [6], theorem 11.5.27) by the fact
that they admit a bounded projection of # onto every closed subspace of E.
Such spaces are subprojective, hence by Pfaffenberger’s result [7] the ideal
&(E) coincides with the ideal #(F) of the inessential operators (which gene-
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rally contains properly (F)) introduced in [5] by D. Kleinecke. Then,
by the theorem, we conclude that

(1]

(2]
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Corollary II. If the Banach space I is a FLy-space, then H(B) = J(L).

W.
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Riassunto

Siano E ed I' due spazi di Banach. Se B & inoltre riflessivo e superproiettivo assieme

ad ogni suo sottospazio chiuso, lo spazio degli operatori sirettamente singolari che vammno
da B in F coincide con Vinsieme degli operatori ¢ cui codominii non possono contenere sotlo-
spazi chiusi di dimensione infinita. 0o generalizza wn teorema di Calkin valide per ope-
ratori che agiscono tra spazi di Hilbert.

® ok ok






