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EprirANIO VIR G A (%)

On the interpretation of the Ising model

as a Markov process (**)

1 - Introduction

Asg is known, the Ising model for ferromagnetism explains the spontaneouns
magnetization of ferromagnetic domains by postulating the existence of a
short range non-magnetic interaction between the atoms of the cristal lattice.
In 1971, working from rather general hypotheses, F. Spitzer [11] obtained
the following result: The representation of a crystal lattice in the Gibbs ensemble
s equivalent to & Markov process, discrete and homogeneous in space, if only the
pairs of nearest-neighbor lattice sites interact.

This characterization follows from the one-to-one correspondence between
the potential describing the interaction of the lattice sites in the Gibbs ensemble
and the distribution of conditional probabilities, on which the representation
of the lattice as a Markov process is based. Spitzer’s theorem implies that the
Ising model may be regarded as a Markov process where the events are ordered
in space rather than in time. Accordingly, the Markovian interpretation of
the Ising model is well founded, but this result does not suggest how to use the
Markovian description in order to deduce the thermodynamic properties of
the system. In this paper, starting from the Spitzer's result, we construct the
canonical partition function of the one-dimensional Ising model, which in turn
determines all the thermodynamic quantities. Moreover, we calculate the tran-
sition probabilities of the Markovian formulation in ferms of the temperature
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and the external magnetic fleld. As is shown in what follows, both canoniecal
partition function and transition probabilities are determined in an unam-
biguous way working only from the equality between Gibbsian and Markovian
distributions of probabilities, based on Spitzer’s theorem.

For an exhaustive account of main results concerning the Ising model, we
refer to [4] and to the literature quoted therein; a special mention is due to
the basic works by R. L. Dobruschin {3], ,.

2 = Brief historical outline

In 1925, E. Ising [6] proposed a simple model for ferromagnetic substances
which, unlike the existing Weiss theory (also known as the molecular field
theory), was based on the hypothesis that the spontaneous magnetization of
ferromagnetic domains (also called Weiss domains) may be explained by short-
range interactions which are not due to atomiec magnetic dipoles. Ising sup-
posed that the interaction between the elementary atomic magnets (which
causes the spontaneous magnetization of domains) decreases fairly quickly
with distance so that it may be thought that only the nearest-neighbor atoms
interact. He also accepted the hypotheses that W. Lenz [9] has put forward
in 1920, to the effect that: (i) the magnetic dipoles of a three-dimensional lat-
tice may take on only certain orientations allowed by the crystal structure;
(ii) the configuration of the lattice with the lowest energy is the one in which
all the elementary magnets have the same orientation.

Applying these hypotheses to the simple model of an ideal one-dimensional
Weiss domain made up of n elementary magnetic moments, Ising worked out
the mean magnetization within the thermodynamic limit, in which # becomes
large. He showed that such a model possesses no ferromagnetic properties, that
is, it does not give rise to spontaneous magnetization. Moreover, putting
forward an intuitive argument, Ising extended the validity of this result to
the similar models for two- and three-dimensional Weiss domains. Thus, he
concluded that the hypothesis which limits the interaction between the ele-
mentary atomic magnets to nearest-neighbor pairs does not explains the spon-
taneous magnetization of domains.
 Nevertheless, in 1952, 0. N. Yang [12] showed that the spontaneous mag-
netization. of the two-dimensional Ising model is different from zero at tempera-
ture less than a critical value 7, (see e.g. [5], p. 373). This contradicts Ising’s
conclusion and proves that the hypothesis of a short-range interaction between
the el‘ementai‘y magnetic dipoles can lead to a complete understanding of the
behaviour of ferromagnetics materials.
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3 - The one~dimensional Ising model

The one-dimensional Ising model is made up of a chain of » equidistant
magnetic dipoles lying in the same direction. Each of these is subject to an
external constant magnetic field whose strength is B and whose direction is
the same as that of the dipoles. Moreover, it is supposed that the magnetic
dipoles are allowed only two orientations: the one, parallel to the external
magnetic field and the other antiparallel. Therefore, the generic configuration
of the whole system is specified by the veector o = (oy, 0y, ..., 0») Where
;= 1 if the ¢-th dipole points in the same direction as the external magnetic
field, and o;,= —1 otherwise. Finally, in accordance with Ising’s hypotheses,
it is assumed that each dipole of the lattice interacts with the pair of nearest-
neighbors only.

3.1 — The energy of the configurations

For the energy of the pair of dipoles which occupy respectively, places ¢
and ¢ + 1 in the lattice, the following expression holds true

(3.1) B(o;, 6:44) = — J 06— uB(0; + 041)

where J is the coupling constant between the dipoles, which is assumed to be
positive (%), and g is their magnetic moment. In equation (3.1) the first term
of the right-hand side is due to the (non-magnetic) interaction between the
dipoles, while the remainder describes the effect of the external magnetic field B.
If J is assumed to be independent of the order parameter of the lattice (hy-
pothesis of homogeneity) eq. (3.1) gives the following formula for the energy
E(s, B) of the generic configuration o

(3.2) E(c, B) = ”“Z[JUiUi+1'}‘MB(O'i+ 0':'+1)] )
{iyit1)

where the subseript (4,7 + 1> means that the summation is extended to all
the pairs of nearest-neighbor dipoles. Moreover, if we make use of the periodic
boundary condition

(3.3) Onpri = Oy,
(*) Indeed, Lenz’s hypothesis, according to which the configuration with the lowest

energy is the one where all the dipoles are parallel to the external magnetic field, requires
the constant J to be positive.
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which can be represented by placing the lattice dipoles in a circle lying on a
plane orthogonal to the direction of the external magnetic field, equation (3.2)
can be expressed in the following more suitable form

(3.4:) E(G, B) = Z [JO‘{O‘H,.l + %‘ ‘LLB(O‘i 7'“ Ui+1)] .

=1

Hereafter, it is assumed throughout that the periodic boundary condition (3.3)
allows us to know all the properties of the linear lattice, when we consider the
thermodynamic limit n > 1.

3.2 — The canonical {or Gibbs) ensemble

The number of lattice dipoles is thought to be fixed, even if it is assumed to
be arbitrarily large within the thermodynamic limit. Thus, the system may
be deseribed in the canonical (or Gibbs) ensemble, which for the configuration o
produces the probability

N __exp[— BE(o, B)]
(8.5) plo) = (5, B) )

where f is the ratio 1/KT (%) and # is the canonical partition function, defi-
ned by (3)

(3.6) #(§, B) =(Z; exp [— fE(s, B)].

As is well-known, all the thermodynamic properties of the system can be ex-
pressed in terms of the partition function alone.

In order to work out z(f, B), Ising makes use in [6] of a complicated cal-
culation of a combinatorial kind, which is left out here to give preference fo
a procedure based on the Markovian interpretation of the model. It is con-
venient to define the dimensionless parameters 6 and # given by

. 4B
3.7 0 := pJ, (3.8) =

(3) As usual, K is the Boltzmann constant and T the absolute temperature.
(3) The symbol 3" means that the summation is extended to all the configurations
of the system. (o)
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Moreover, if we set
{3.9) (o, ) 1= Z [0:001 + $9(0: + 004)]
=1

the probability of the generic configuration o becomes (see eq. (3.5))

exp [Oe(o, 1)]
(3.5)" plo) = T a0,

where Z is the partition function written in terms of § and »

(3.6)' Z0,n) = (Z)exp [Oe(o, )] .

4 - The Markovian interpretation

The Spitzer’s theorem, stated in 1, insures that the one-dimensional Ising
model can be regarded as a linear homogeneous Markov process; thus, the
quantities o; make up a Markov chain (*) independent of the order variable 7.
This is the same as to think that the probability of the i-th dipole lying in the
same direction as the external magnetic field or in the opposite one, is indepen-
dent of the position held in the lattice, and that this probability is determined
only by the actual orientation of the (¢— 1)-th dipole.

4.1 — The transition probabilities

If p(oin]oy) stands for the (conditional) probability that the orientation
of the (¢ - 1)-th dipole is expressed by .., when the orientation of the ¢-th
one is given by o¢,, and if

(4.1) P(0i42]0)) >0  for every o and %,

the probability #(o) of the configuration ¢ = (0;, 0., ..., 0,) turns out to be
defined by the relation

(4.2) P(0) := p(0:|01)p(05]0) v P(Cnsa]0n) 5

where the periodic boundary condition (3.3) is understood.

(%) More details about Markov chains can be found, for example, in ref. [1], [2], [10].
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4.2 — The Markov mairiz

Since the one-dimensional Ising model is represented by a Markov chain
homogeneous in space, the transition probabilities may only take on four
different values, which are the elements of the Markov matrix ¢

P P
( — ++ —+ .
(4.3) Q= ( 2. P )

In fact, p,, is the probability that the (¢ 4 1)-th dipole is parallel to the ex-
ternal magnetic field, when the 4-th one is also parallel, p_, is the probability
that the (¢ <4 1)-th dipole is antiparallel to the direction of the magnetic field,
when, instead, the i-th one is parallel to this, and the remaining elements are
defined in exactly the same way. Hence, the normalization condition of
probability

(4.4) S Plo) =1,
(o)

which, by virtue of eq. (4.2), is written as

(4.4) %p(d1z+1la1z)P(Gann—1) ---p(o'zlo'l) =1,

turns into the following property of matrix ¢
(4.6) tr (@™ =1.

This shows that the matrix of the transition probabilities has to fulfill a con-
straint which depends on the number of dipoles in the lattice. Moreover, the
normalization of conditional probabilities requires the elements of the Markov
matrix to satisfy the following equations

(4.7) Pop+pi=1, p_,+p__=1.

5 = Construction of the canonieal partition function

Since the representation of the one-dimensional Ising model in the Gibbs
ensemble and the formulation of it as a Markov process are equivalent, the
canonical and Markovian distribuitions of probabilities have to be equal.
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Therefore, if we assume that condition (4.1) is fulfilled, the following identity
holds true

(5.1) pl{c) = P(e) for every o.

By applying eqgs. (3.5) and (4.2), the identity (5.1) may be changed into an
equation for the canonieal partition function and the transition probabilities.
We now proceed to show that, using only eq. (5.1), it is possible to determine
within the thermodynamic limit these unknows, in such a manner that con-
straint (4.6) is fulfilled and hypothesis (4.1) verified.

5.1 — The modified Markov matriz

By virtue of eq. (3.9), (3.8) becomes

1
(5.2) p(o) = 70, 7)

1:_11 exp {0[0;0:41 -+ dn(o: 4 0042)1} -

1

Moreover, inserting egs. (4.2) and (5.2) into (5.1), we have

(5.3) Z(0,7) = iﬁ exp {*‘ 0lo; 0040 + 39(0: -+ Gi+1)]}p(0i+l Io'i) .

Adding up both members of equation (5.3) over all the 2» conﬁgumtidns, We
obtain

(5.4) 70,0 tr (B") ,

where I is the modified Markov mairiz (5) defined by

_ . Prpexp[— 01 + )] P, exp[0]
(5.5) = 0 D =01 —m)] )
pyexpll] p__exp[—0(1 —n)]
Notice that the elements B;; of B not necessarily fulfill the normalization
conditions of a Markov matrix R,; + R,;=1, (4 =1, 2).
‘We now infend to show that, by means of eq. (5.1), the eigenvalues of @
and B can be expressed in terms of the canonical partition function.

(3) A different matrix of this same kind was introduced by H. A. Kramers and
G. H. Wannier in their matrix formulation of the one-dimensional Ising model (cfr. [7],
Sect. 2).
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5.2 — The eigenvalues of Q)

By putting p:=1p,,, ¢:=p__, and using eqs. (4.7), the characteristic
equation of the Markov matrix may be written in the following form

B—p+9i+p+q¢g—1=0,
whose solutions are (¢)) 4, =1, A,=p 4+ ¢—1.

It is easy to express the transition probabilities p and ¢, and therefore the
eigenvalue 4., in terms of the partition function Z(0, ). Indeed, if we consider
the particular configuration et deseribed by o :=1 for every ¢, we obtain
(see eq. (5.3)) p= (1/Z(0,n)) exp [n0(1 + n)], from which, by defining

(6.6) {0, n) := [4(0, 77)]1/" y

it follows that
1
(5.7) P = 7 exp (01 + 1.

In a similar manner, by considering the particular configuration o— defined by

o;:= —1 for every ¢, we find

4

(5.8) qg= -Z: exp [0(1 —n)].

Thus, the eigenvalue A, of ¢ becomes

(5.9) Ay= s exp[0] coshOn—1.

| b

Notice that this equation gives
(5.10) Ay >—1.

5.3 — The eigenvalues of B

Let A, and A_(A, > A_) be the eigenvalues of the modified Markov matrix.

(%) Asis well-known (see e.g. [1], Sect. 2.2), a Markov matrix has at least one eigen-
value equal to 1.
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Then eq. (5.4) becomes

(5.11) o A n

and, by introducing egs. (5.7) and (5.8) into (5.5), we have

1 exp [01{¢ — exp [0(1 — )]}

exp [01{C — exp [0(1 + 7)) 1)

1
R =~
¢
Thus, equation (5.11) can be written in the form
(5.12) - opto= 2,

where pu, and u_(u, > u_) arve the eigenvalues of the matrix {R. As is easy
to check, u, and p_ have the following expressions :

(5.13) po=1 4 exp [01{C>— 2 exp [0] cosh On + exp [20]} .

Tt is not difficult to show that the square root in the right-hand side of eq. (5.13)
is real for every value of 0 and 7.

5.4 — The thermodynamic limit

Equation (5.12) can also be expressed as follows

w1 (

oy = 2,

o

which, since u_fu, <1, in the limit # > 1 leads to u, = 2. Therefore, in the
thermodynamic limit, { solves the equation (see eq. (5.13))

(5.14) &2 —2 exp [0] cosh (0n)¢ - 2sinh 20 = 0.

This algebraic equation in ¢ has the roots

(5.15) Ly = C.(0,7m) = exp[0](cosh Oy £ {sinh?0n + exp [—40]}) .

By calculating the right-hand side of eq. (3.6)" at 0 == 0, we have Z(0, u)= 2"

and, by virtue of definition (5.6) £(0, ) = 2, for every 7. On the other hand,
from eq. (5.15) it follows that . (0,7) = 2, {_(0,7n) = 0. Thus, the solution
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{_ is not acceptable and ¢ can be given in the form

(8.16)  £(0,n) = (0, 7) = exp[0](cosh Oy -+ {sinh28y + exp [— 40733 .
Therefore, in the thermodynamic limif, we obtain

(5.17) 4(0, ) = exp [n0](cosh On -+ {sinh20y - exp [— 4074,

a»ild applying eqs. (5.7), (5.8) and (4.7), the transition probabilities read
(5.18);  pop=p,.(0,7n) = exp[Oy](cosh Oy -+ {sinh20y + exp [— 407341,
(3.18), p__=p__(0,7) = p..(0, —m),

(5.18); py.=p, (0,n)=1—p, . (0,9),

(3.18)y p_y=p_(0,n) =1—p__(0,7).

Sinee {(0,7) > exp [0]-coshOn for every 0,7, the eigenvalue 1, of the
matrix satisfies the inequality 1, < 1. This, together with (5.10), enables us
to prove that eqs. (5.18) are consistent with condition (4.6). Indeed, this
constraint also read A? 4 A2 =1, which, since 1,= 1, is satisfied within the
thermodynamic limit, if |4,] < 1. Moreover, our basic hypothesis (4.1) is
verified by solution (5.18). In fact, eq. (3.6)" can be also put in the following
form

Z(0,7) = exp [n0(L + )] + 3 exp [Oe(a, )],

(o=—07)

where the symbol » means that the sum is extended to all the configurations
(o—0o*)
except ot. Thus,

§(0,m) >exp[0(1 4+ )] for every 0,7,

which, by virtue of eqs. (5.7), (5.8) and (4.7), leads to prove that all the ele-
ments of the Markov matrix @ are strictly positive and less than one. Notice
that this result is independent of the thermodynamie limit; thus, the Markovian
formulation of the linear Ising model presented here is self-consistent, no matter
how many the magnetic dipoles are.

Finally, by inserting eqs. (3.7) and (3.8) into (5.17) and (5.18), we find the
canonical partition function and the transition probabilities in terms of the



[11]  ON THE INTERPRETATION OF THE ISING MODEL AS A MARKOV PROCESS 371
physical variables f and B
(5.19)  2(B, B) = exp [nfJ](cosh ufB + {sinh®upB + exp [—4pJ}})",
(5.20), Py = Pys(B, B) = exp[upB(cosh ufB + {sinh*ppB + exp [— 45J )2,
(5.20), p_=P__(p, B) = p..(f, —B) .
The equation (5.19) is the same as that found by Ising [6] by direct computa-
tion; however, here it has been deduced working only from the formulation
of the Ising model as a Markov chain.

5.5 — The magnetization of the lattice

As is well-known (cfr. e.g. [8], n. 52), in the Gibbs ensemble the magnetic

moment M(B, B) of a system subject to the external magnetic field B can be
expressed in terms of the canonical partition function z(f, B)

1 -
(5.21) M(p, B) = 5 55 n&(p, B)

By inserting equation (5.19) into (5.21), we find that the magnetic moment
per dipole of the one-dimensional Ising model is (see also ref. [6], p. 256)

(5.

Lo

1 .
2) = M(B, B) = psinh (ufB) {sinh? (ufB) + exp [— 4pJ1}71/2.
In the limit B = 0, from equation (5.22) we obtain
1
. M(B,0)=10 for every 5.

This same calculation led Ising (loc. cit.) to conclude that spontancous mag-
netization is absent in the one-dimensional model and, therefore, it does not
give rise to ferromagneti>m.
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Riassunto

Si costruisce la funzione di partizione canonica del modello unidimensionale di Ising
nell’ambito della sua formulazione in termini di processo markoffiano disereto ed omogeneo
nello spazio. Inoltre, le probabilita di iransizione, che intervengono nella deserizione mar-
koffiana, si esprimono in termini delle variabili macroscopiche del modello; cioe, la tempe-
ratura e Uintenstta del campo magnetico esterno.



