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A quasi-analytical treatment

of a singular integral equation (**)

1 - Introduction

In the present paper the following Fredholm integral equation of second
kind, related to a large class of physical problems described by a linearized
model of the Boltzmann equation [4] is studied

(1) f(@) = g(2) + Af(x) ,

where 4 is a singular Fredholm operator, f(x) is the unknown funetion and
g(z) is a known function which characterizes the particular physical problem
considered.

The difficulty of solving problem (1) is due to the fact that the kernel of
the integral operator cannot be analytically expressed and is singular in the
origin; however such an equation has been studied by some authors (see, in
particular, the paper by Boffi et al.[3] and its related bibliography, where
this equation is applied to internal flows between parallel plates in rarefied
gas conditions).

In the present paper a new method, which is devoted to the approximation
of the afore-mentioned kernel, is developed; moreover the evaluation of the
error-bounds of the approximated solution of Eq. (1) is realized. In particular
2 describes the approximation method, whereas 3 performs some numerical
results and applications. ‘

(*) Indirizzo: Istituto Matematico, Politeenico, C.so degli Abruzzi 24, 10129 To-
rino, Italy.
(**) Ricevuto: 12-11.1982.
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2 - Analysis of the method

Let us consider the following equation
(2) f@) = g() + Af(2) = g(2) + | T(z,s)](s)ds,

ze[—a,al, 4: L,(— a, a) = Ly,(— a, a), with

@1 | — s8]

A A
(3) T(x,8) = n—llzoj 7 OXD {—t2— VAt = a7 2T (o —s ),

where T _; is the —1-order Abramowitz funetion [2].
Before developing the method, let us recall some important properties of
the funetion 7'_,, which will be used furtherly; in particular, putting

p=|e—sleP =0, 2a],

we have (see refs.[2], [3])

(1) p—>-+oo:  T,(p) :‘n;” (g- )72 exp {—3 (% )},
@) POt Ta(p)=—3 y +mp—Inp[l4 0(p)],
where y = 0.5772157 is the Huler constant,
(3) lim 2, (p) = + oo, ) |Taf<e<+ oo

Let us now define the following function in L,(P)

B(p) = z**p exp {p} T(p) ,

the function B has the following properties
(i) B(0)=0, (i) lim B(p) = + oo, (i) [B]<k <+ oo,

P>t

which follow immediately from the properties of T_,.
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The regularity of B allows its approximation with a polynomial expan-
sion @, (see ref. [7], pag. 36), such that

lim Q. (p) = B(p),

n—r

moreover let us define the following functions

Qn(p)

V=1 T.p)eL,P), T.(p)=—""—rv
(5) (p) € Ly(P) ?) poxp (5}’
which, from the definition of B, has the folloving properties

(iv)  lim T.(p) = <+ oo, (V) [T <k <+ oo.

p—+07

Finally let us define the following equation

(6) fol@) = g(@) + Autal@) = g(@) + [ Tulw, ) Fu(s)ds .

The aim of the present paper consists in studying eq. (6) instead of eq. (2)
and in evaluating the error which is made following this line. For this pur-
pose let us re-write egs. (2) and (6), respectively, as follows

{7) Hf =g, (8) H,.f,=y,
where

(9) H,H,: Ly(—a,a) > Ly(—a,a), H=I—A, H,=I—A4,
I being the identity operator.

Proposition 1. The problem (8) is well-posed in the sense that ewist suf-
ficient conditions for the ewistence and wniqueness of the solution of eq. (8).

Proof. Let us prove the existence of (H,)-1; in fact T, is symmetric
and bounded (see eq. (5) and property (v)), therefore A4, is a compact and
self-adjoint operator (see ref.[6], pp. 456-459). These properties ave sufficient
to prove the existence and the uniqueness of the solution of eq. (8) (see again
ref. [6], third theorem of Fredholm, sec. IX-2.4), as well as eq. (7) (see ref.[3]).



292 A.R. ABETE SCARAFIOTTI [4]
Therefore (H,)~* exists and is bounded (see vef.[5]), namely

(10) IH) < w< + oo

and the proposition holds.

Proposition 2. If

(11) | H—H,||- |(H.) <1
and
(12) 17— T.<e,

then the error in solving eq. (8) instead of eq. (1) is controlled as follows

(18) If — fall < J(H)™* — (Ha) ) - gl < «lgl
with o« = a(e, n).

Proof. By means of condition (10) together with hypothesis (11), it is
possible to state (see ref. [5]) the following inequality

H(Hn)_lng. ”H'—Hn”
1= IH) - |H—H,| -

(14) IH) ™ — (Ha) | <

On the other hand from the Fredholm inequality on compact operators (see
ref. [6], sec. IX-2.1) the following inequalities are verified

(15) |H—Ha| = |A— A, <|T—T.].

Consequently, utilizing the inequalities (14-15), the expression (13) is satis-
fied and

(H,)-|z
(16) o =oae,n) = 1—”—-]?(11“)“‘——1‘_15“—6 ’

which proves the proposition.
Then from formula (13) the distance [f— f,| can be sufficiently little be-
cause in the actual physical problems is [lg]< 1. V
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3 - Applications and comments
In order to verify the conditions stated in Proposition 2, this section is
devoted to an evaluation of the quantity & which appears in the inequality (12).
We prove that

(17) 1L — T < (e &")Hz, &', e"e Rt .

TFor this purpose let us define ¢’ and G

A
GI:”T“Tnnzy O<_p<h<<2(l;,
(18) |

A
G =|T—1T,]2, h<p<2a.
The problem consists in proving that
G/<6,, Gll<8”'

The quantity &’ can be evaluated numerically and it can be shown that
¢’ is arbitrarly small increasing the degree » of the polynome @, (see eq. (4)).
On the other hand, for evaluating ¢’, it is necessary to utilize the properties
of the Abramowitz function 7'_,, because the functional G’ contains the sin-
gularity in the point p == 0.

Proposition 3. The functional @' is bounded and results

¢'= O0(h-In2k)  when h—0".

Proof. In fact Vp > 0: T,.(p)> 0 and therefore results
A & 3
(19) a' =OI[T(19) — Ta(p))*dp < [[T(p)12dp ;
1]

on the other hand it is known (see ref.[3]) that
(20) T(p)<i a2 Ey(p) ,

where I;(p) is the exponential integral function [2] defined as follows

A o .
(21) B(p) =—y—Inp + ¥ ¢.p™ (p>0).

m=0
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Therefore from eq. (21) follows

h k @«
(22) G'<[(T(p)):dp = {[% +aH{—y—Inp+ 3 e,pm) 2dp .

m=Q

The analytical treatment of the last integral shows immediately that, when
h— 0%, the quantity &' is of the order of (h-In? k), which proves the proposition.

As a comment let us note that the last proposition shows that the objective
of reducing ¢ and therefore ¢ corresponds to the numerical problem of com-
puting the function 7_; for the smallest value p = h.

Let us now deal with the quantity ¢’. The latter can be evaluated with
numerical calculations, once the function B(p) has been approximated with a
polynome @,.(p), p €.P. :

For this purpose let us use a Bernstein polynome [7], namely

Q.(z) = g (?z) B(k/n)ak1(1— g)—F 1 = —2% .

Then &" decreases quickly increasing the order n of the polinome.

As an application for n = 8, &” is of the order of 10—, [(H,)~*| of the
order of 1.

Let us note that by this method the numerical computing is reduced; in
fact the kernel is computed once for every value of the parameter a and this
opens a way to the analytical treatment.
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