MURSALEEN and H. Z. KHAN (*)

Nonarchimedean spaces of bounded sequences all of whose invariant means are equal (**)

1 - Introduction

Let σ be a mapping of the set of positive integers into itself. A continuous linear functional Φ on l_{∞} is said to be an invariant mean or a σ -mean if and only if: (1) $\Phi(x) \ge 0$ when the sequence $x = \{x_n\}$ has $x_n \ge 0$ for all n; (2) $\Phi(e) = 1$, where $e = \{1, 1, 1, ...\}$; (3) $\Phi(\{x_{\sigma(n)}\}) = \Phi(x)$ for all $x \in l_{\infty}$. For certain kinds of mappings σ , every invariant mean Φ extends the limit functional on e in the sense that $\Phi(x) = \lim x$ for all $x \in e$. Consequently, $e \in V_{\sigma}$, where V_{σ} is the set of bounded sequences all of whose σ -means are equal. In case σ is the translation mapping $n \to n + 1$, a σ -mean is often called a Banach limit and V_{σ} is the set of f of almost convergent sequences [1].

It can be shown that the set V_{σ} can be characterized as

$$V_{\sigma} = \{x \in \mathcal{S} : \lim_{m \to \infty} \frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n} \text{ exists uniformly in } n \},$$

and has the form Le, L being the common value of all σ -means at x (see [4]) where $Tx = \{x_{\sigma(n)}\}$. We write $L = \sigma - \lim x$. Also

$$V_{\sigma}(E) = \{x \in E : \lim_{m \to \infty} \frac{1}{m+1} \sum_{i=0}^{m} T^{i}x_{n} \text{ exists uniformly in } n\}$$
.

^(*) Indirizzo: Dept. of Math. Aligarh Muslim University, Aligarh, 202001 India.

^(**) Ricevuto: 12-I-1982.

Let $p = \{p_m\}$ be a sequence of real numbers such that $p_m > 0$ and sup $p_m < \infty$. We define

$$V_{\sigma}(p) = \{x \in S \colon \lim_{m \to \infty} \mid \frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n} - Le \mid^{p_{m}} = 0 \quad \text{uniformly in } n \text{ for some } L \in S \} \ ,$$

$$V_{\sigma\sigma}(p) = \{x \in V_{\sigma}(p) \colon \sigma - \lim x = 0\}$$
.

In particular, if $p_m = p$ for every m, $V_{\sigma}(p)$ and $V_{0\sigma}(p)$ are same as V_{σ} and $V_{0\sigma}$ respectively.

In [6] and [3]_{1,2,3}, some matrix transformations have been characterized in V_{σ} for real or complex sequences. In [5], authors study some matrix transformations in nonarchimedean spaces. In the present paper, we study the space V_{σ} as nonarchimedean and characterize some classes of matrices.

2 - Preliminaires

Let X denote a topological vector space over S. A subset Y of X is said to be absolutely convex if $VY + VY \subset Y$, V denotes the valuation ring of S. Y is said to be convex if it is absolutely convex or a translate of an absolute convex set. $Y \subset X$ is called balanced if $VY \subset Y$. A filter base consisting of convex sets is called a convex filter base. X is said to be non-archimedean if there exists a convex filter base of $0 \in X$ consisting of balanced sets.

Let $A = (a_{nk})$ be an infinite matrix of elements of S and $x = \{x_n\}$ be a sequence of elements of S. We write $Ax = \{A_n(x)\}$ if $A_n(x) = \sum_k a_{nk} x_k$ converges for each n. If P and Q are any two sequence spaces, we write (P, Q) to denote the class of matrices A such that $Ax \in Q$ for every $x \in P$.

We write
$$\sup_{n} := \sup_{n=0, 1, \dots} ; \quad \lim_{n \to \infty} := \lim_{n \to \infty} ; \quad \sum_{n} = \sum_{n=0}^{\infty} .$$

Throughout this paper we shall use the notation a(n, k) to denote the element a_{nk} of the matrix A. We write

$$t_{mn}(x) = \frac{1}{m+1} \sum_{j=0}^{m} T^{j} x_{n}, \quad t_{mn}(Ax) = \sum_{k=1}^{\infty} \sum_{j=0}^{m} a(\sigma^{j}(n), k) x_{k}/(m+1),$$

3 - Main results

Theorem 1. If S is complete and $\inf p_m > 0$, then $V_{\sigma}(p)$ is a complete nonarchimedean topological vector space the nonarchimedean metric

$$g(x) = \sup_{m,n} |t_{mn}(x)|^{p_m/M},$$

where $M = \max(1, \sup p_m)$. If E is complete then $V_{\sigma}(E)$ is complete.

Proof. Let $x, y \in V_{\sigma}(p)$. It is easy to show that g(0) = 0 and g(x) = g(-x) and $g(x + y) \leq \max(g(x), g(y))$. Therefore g defines a nonarchimedean metric on $V_{\sigma}(p)$. Further for $\lambda \in S$ we have $g(\lambda x) \leq \max(1, |\lambda|) g(x)$. Therefore $\lambda \to 0$, $x \to 0 \Rightarrow \lambda x \to 0$ and if λ is fixed, $x \to 0 \Rightarrow \lambda x \to 0$. If $x \in V_{\sigma}(p)$ is fixed, then we have

$$g(\lambda x) \leqslant \max(|\lambda|, |\lambda|^{p'}) g(x)$$
, where $p' = \inf p_m$.

Since $p_m/M \le 1$, we have for every m and n (see [2]₂)

$$|t_{m,n}(x+y)|^{p_m/M} \leq |t_{mn}(x)|^{p_m/M} + |t_{mn}(y)|^{p_m/M},$$

and for every $\lambda \in S$ (see [2]₁) $|\lambda|^{p_m/M} \leq \max(1, |\lambda|)$.

Therefore it follows that $V_{\sigma}(p)$ is a linear topological space.

Now, let $Y_n(0) = \{x: g(x) < 1/n\}$, which is a filter base and each $Y_n(0)$ is balanced, for if $\lambda \in V$ and $x \in Y_n(0)$, then

$$g(\lambda x) \leqslant \max(1, |\lambda|) g(x) = g(x) < \frac{1}{n},$$

and therefore $x \in Y_n(0)$, i.e. $VY_n(0) \subset Y_n(0)$. Furthermore, each $Y_n(0)$ is convex, for if, $x, y \in Y_n(0)$ and $\lambda, \mu \in V$, then

$$g(\lambda x + \mu y) \leqslant \max (g(x) g(y)) < \frac{1}{n},$$

and hence $\lambda x + \mu y \in Y_n(0)$, i.e. $VY_n(0) + VY_n(0) \subset Y_n(0)$. This leads that $V_{\sigma}(p)$ is a nonarchimedean topological vector space.

To show completeness, let $\{x^i\}$ be a Cauchy sequence in $V_{\sigma}(p)$. Then for each k, $\{x_k^i\}$ is a Cauchy sequence in S and hence $x_k^i \to x_k$ for each k. Let

 $x = \{x_k\}$, then $x^i \to x$. We now show that $x \in V_{\sigma}(p)$. Since $x^i \in V_{\sigma}(p)$, there exist $L^i \in S$ and m_i such that for every n and for every $m > m_i$

$$|t_{m,n}(x^i - L^i e)|^{p_m/M} < \varepsilon.$$

Since $\{x_i\}$ is a Cauchy sequence, given $\varepsilon > 0$, there exists N_0 such that for $i, j > N_0$ and for every m, n,

$$|t_{mn}(x^i-x^j)|^{p_m/M} < \varepsilon.$$

Taking limit as $j \to \infty$ we get

$$|t_{mn}(x^i-x)|^{p_m/M} < \varepsilon.$$

By virtue of (1) and (2), it follows that, for $m>m_0$ and $i,\ j>N_0$, $|L^ie-L^je|^{p_m/M}<\varepsilon$. Thus $\{L^i\}$ is a Cauchy sequence in S and therefore, there exists $L\in S$ such that, for $i>N_0$

$$|L^{i}e - Le| < \varepsilon.$$

Now, by virtue of (1), (3) and (4), we have, for every $m > m_0$, $|t_{mn}(x) - Le|^{p_m/M} < \varepsilon$. This terminates the proof.

Theorem 2. $A \in (c(p), V_{\sigma})$ if and only if: (i) there exists an integer B > 1 such that $\sup_{n,k,m} |\sum_{j=0}^{m} a(\sigma^{j}(n), k)| B^{-1/p_{k}}/(m+1) < \infty$, (ii) $a_{(k)} = \{a_{nk}\}_{n=i}^{\infty} \in V_{\sigma}$ for each k, (iii) $a = \{\sum_{k} a_{nk}\}_{n=i}^{\infty} \in V_{\sigma}$.

In this case, the σ -limit of Ax is $(\lim x)[u-\sum_k u_k]+\sum_k u_k x_k$ for every $x \in V_{\sigma}(p)$, where $u=\sigma-\lim a$ and $u_k=\sigma-\lim a_{(k)}$.

Proof. Let $A \in (c(p), V_{\sigma})$. Since e^{k} , $e \in c(p)$, necessity of (ii) and (iii) is obvious, where $e^{k} = \{0, 0, ..., 0, 1 \ (k\text{-th place}), 0, ...\}$. It is easy to see that $(c(p), V_{\sigma}) \subset (c_{0}(p), V_{\sigma})$, therefore, for the necessity of (i) we observe that $A \in (c_{0}(p), V_{\sigma})$, where $A \in (c(p), V_{\sigma})$. It is obvious that $\{t_{mn}(Ax)\}$ is a sequence of continuous linear functionals on $c_{0}(p)$ such that $\lim_{n \to \infty} (Ax)$ exists uniformly

in n. Then, by uniform boundedness principle, there exists a sphere $S[\theta, \delta] \subset c_0(p)$, with $0 < \delta < 1$, $\theta = \{0, 0, 0, ...\}$, and a constant K such that $t_{mn}(Ax) \leqslant K$ for each m and for every $x \in S[\theta, \delta]$. For every integer r > 0, we define a sequence $(x^{(r)})$ of elements of $c_0(p)$ as follows

$$x_k^{(r)} = \left\langle \begin{array}{l} \delta^{M/n_k} & \mathrm{sgn} \left(\sum_{j=0}^m a(\sigma^j(n), k)/(m+1) \right), \qquad 0 \leqslant k \leqslant r \\ 0, & r < k. \end{array} \right.$$

Then $x^{(r)} \in S[\theta, \delta]$ for every r and $\sup_{k} |\sum_{j=0}^{m} a(\sigma^{j}(n), k)| B^{-1/p_{k}}/(m+1) \leqslant K$, for each m and r, where $B = \delta^{-M}$. Therefore (i) is satisfied.

Conversely, suppose that conditions (i), (ii) and (iii) are satisfied and $x \in c(p)$. Then there exists l, such that $|x_k - l|^{p_k} \to 0$. It is easy to check that $(u_k) \in c_0(p)$. Given $\varepsilon > 0$ there exists k_0 such that

$$|x_k-l|^{p_k/M} < \frac{\varepsilon}{B(2D+1)} < 1$$
 for every $k > k_0$,

where

$$D = \sup_{n,k,m} |t(n,k,m)| B^{-1/p_k}, \quad t(n,k,m) = \sum_{j=0}^m a(\sigma^j(n),k)/(m+1).$$

Therefore, we have

$$B^{{\scriptscriptstyle 1/p_k}}|x_k-l|\!<\!B^{{\scriptscriptstyle M/p_k}}|x_k-l|\!<\!(\frac{\varepsilon}{2D+1})^{{\scriptscriptstyle M/p_k}}\!<\!\frac{\varepsilon}{2D+1}\ \text{for every}\ k>k_0\,,$$

where $M=\max(1, \sup p_k)$. By (i) and (ii) we have $|t(n, k, m) - u_k|B^{-1/p_k} < 2D$. Whence

$$\begin{split} |\sum_k \big(t(n,k,m)-u_k\big)(x_k-l)\,| \leqslant \sup_k |t(n,k,m)-u_k|\,|x_k-l|+\varepsilon\,, \\ \lim_m |\sum_k \big(t(n,k,m)-u_k\big)(x_k-l)\,| &= 0 \quad \text{uniformly in } n\,. \end{split}$$

Therefore, $\lim_{m} \sum_{k} t(n, k, m)x_k = u + \sum_{k} u_k(x_k - l)$. This completes the proof.

References

- [1] G. G. LORENTZ, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
- [2] I. J. Maddox: [•]₁ Spaces of strongly summable sequences, Quart. J. Math. (18) 2 (1967), 345-355; [•]₂ Elements of functional analysis (Camb. Univ. Press, 1970).
- [3] Mursaleen: [•]₁ On infinite matrices and invariant means, Indian J. Pure Appl. Math. (4) 10 (1979), 457-460; [•]₂ Invariant means and some matrix transformations, Tamkang J. Math. (2) 10 (1979), 183-188; [•]₃ On some new invariant matrix methods of summability, Quart. J. Math., Oxford (2) 34 (1983), 77-86.

- [4] R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963), 81-94.
- [5] M. S. Rangachari and V. K. Srinivasan, Matrix transformations in nonarchimedean fields, Indag. Math. 26 (1964), 423-429.
- [6] P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc. (1) 36 (1972), 104-110.

Abstract

Let l_{∞} and c be the spaces of all bounded and convergent sequences of a nontrivially nonarchimedean valued field S and E be a nonarchimedean normed linear space over S. In this paper, we study some matrix transformations in nonarchimedean spaces.

* * *