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GIUsTINA PI1ocaA (%)

Generalized chromatic numbers of some graphs (**)

1 - Introduction

Generalizations of the chromatic number of a graph have been given by
G. Chartrand, D. P. Geller and S. Hedetniemi [2], F. Speranza [5], S. Anto-
nueei [1] and M. Gionfriddo [3].

We will adopt the definition in [1], which inecludes almost all the defini-
tions mentioned above. Let 4 be a set of natural numbers. The A-chromatic
number of @, y4(@&), is the smallest number of colours needed to colour the
vertices of the graph @ so that the distance between two vertices with the same
colour is not in A.

If d denotes the diameter of @ and D = {1, 2, ..., d}, then of course, y.(&)
depends just on 4 N D. It is trivially verified that, for every graph &, y.(G)=1
iff A ND =0 and that y,(G) =|V(G)]| ift AN D =D and G is connected.
In particular, if @ is the clique X,, then d = 1 and y,(G)=n or 1 (depen-
ding on whether or not 1e4).

We observe that if @ is either the clique with a hamiltenian cycle removed
K,(—1), or Gis a cyele ,, it is easy to find D. If G is one of these two
graphs and A N D = {1,2, ..., s}, ya(&) is known [1], [5].

We now will determine the 4-chromatic numbers of K, (—1) if n>4 and

AND=1{2,4,..}, AnNnD={1,3,.}, AnD=/{c

of C,if AND = {¢} and n>3. Let y'(¢), y"(G) and y,(G) denote these
numbers, respectively.

(*) Indirizzo: Istituto di Matematica, Facoltd di Ingegneria, Via Claudio 21,
80125 Napoli, Italy.
(**) Lavoroeseguito nell’ambito del G.N.8.A.G.A. (C.N.R.). — Rieevuto: 7-XII-1981.
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We call the corrispondent colourings even-colourings, odd-colourings and
¢-colourings, respectively.

Furthermore, if G is a tree, y/(G) and y"(G) are known [1]. We will deter-
mine y. (&) for trees.

2 - The chromatic numbers of K, (— 1) and 0,

Since D(K,(—1)) = {1, 2}, then y, = 9" and y, = »". Let [k] and |k| de-
note the least integer greater than or equal to &, and the greatest integer not
greater than &, respectively. Then we have the following theorem.

2 if n is cven
Theorem 1. Y (K, (—1)) = Q
3 if nis odd,

Y (K.(—1)) = [n/2].

Proof. Let the vertices of K,(— 1) be labeled 1, 2, ..., n according to their
order in the removed hamiltonian cycle. Then for each %, d(v;, v,,,) = 2, while
d(vsy ;) = 1 for all j such that js<4—1, 4, 4 + 1 (mod n). Thus in a odd-
colouring at most two vertices (whose two indices differ by 1 modulo %) may
have the same colour, so that »"(K,(—1)) is not less than [n/2]. On the
other hand, if we assign the colour [(¢ —1)/2] to the vertices v, a [n/2]
colouring results.

Similarly, for y'(K,(— 1)), at most |n/2] vertices may have the same colour
(two vertices in the same colour class must have non-consecutive indices) so
that y'(K.(—1)) > 2 or 3 according to n is even or odd. To achieve such a
colouring, assign to vertex v,,, the colour 0, to vertex v,,, the colour 1, for
0<i<|n/2] —1, and to vertex v, the colour 2 when n is odd.

Consider now the n-cycle C,. If v; is a vertex of C,, then d(v,, v,,,) = 1,
A0y Vis) = 2, ..vy AV, 0;40) = h, where the addition is mod # and h = |n/2].
So D(C.) = {1, 2, ..., [n/2]}.

Theorem 2. Let ¢ be an integer non greater than h and let m = nf(n, ¢) (*).

(*) (m, ¢) is the greatest common divisor of % and e.
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Then

2 if m is even

_ /7
%(Gn) = \

3 df m ds odd.

Proof. ILabel the vertices v, v, ..., v, according to their order in the
circuit and for any 4 consider the cycle C(4) of distinet vertices: C(3) = (v,,
Vipey Vigacy ooy Vizme = ;). C(3) has length m = nf(n, ¢) and any pair of con-
secutive vertices in the cyecle must have different colours. Thus if m is odd
[respectively even], three [resp. two] colours are necessary for an usual col-
ouring of C(3).

On the other hand, we note that if C(4) % C(j) no vertex in C(¢) has dis-
tance ¢ from any vertex in C(j). So that after colouring C(1) we may use the
same two (or three) colours to colour C(2) in the same way and so on, achie-
ving the required colouring.

3 - The c-chromatic number y,(T,) of a tree T,

Let P(v, w) be the path of T, between the vertices v and w, J,(v)= {v,
€ V(T',)|d(v, v;) = h}, and I,(v) a subset of J,(v) such that P(v,v) N P(, v,'L)
= {v} for every two vertices, v, and fz),". Furthermore, let ¥ be one of the two
central vertices of T, and »(T,) be its radius [4]. For every two paths, P

and @, PN @ denotes the vertex set intersection.

Lemma. If 7&’<70<k, then the distance between fwo vertices 'UZGJ;('D) and
v € J5(v), having distance ¢ from a given vertex v, € J,(v), is less than c.

Proof. Set P(v,v) N P(v, v;) = {0, 01, ..., 0}, Plo,v) N P(v,v5) = {v, 01,
vy Oy and  P(v,v) N P(v,v;,) = {9, 01, ..., vy Then h'= min {h, '} If
h”:_ h, then d(vg, vy) = '+ k—2h. Analogi)usly, if h”-—: B’y then d(vg, v;,)
= k'+ l_c~—2h’. On the other hand, bein_g k'<k [resp. k<k] and d(v, v;)
=k + k—2h = ¢ [resp. d(vy, v;) = k + k'— 2h'= ¢], then d(v, v;) <ec.

Remark. If ¢is even, the lemma implies that |P(w, v;) N P(®, v;,)|>2,
where @ is the vertex at distance ¢/2 from v, and vz.
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We set r' (1) == v(T,,) if #(T,) and ¢/2 are both even or odd, »'(T,)=2(Z,) —1,
otherwise, and ¢'= ¢ or ¢ —1 depending on whether or not ¢/2 is even.

Theorem 3. If cis even, then y (T,)>max|I ()| and if ©'(T,)<c', then
ve(TLh) <max [Iep(v)| 4 [min {'(T.), '} — ¢/2]/2, if #(T,) > ¢, then y.(T,)<max
| Lop(0) | + (e — 2)/2-

Proof. We start by proving the first inequality. Let v, and »,,, be two
vertices such that P(v,v,) N P(v, v,) = {v}. Bvidently », and », are at dis-
tance ¢ - ¢'. This distance is ¢ iff #= ¢ —1¢. If there exists another vertex,
¥y, such that P(w, v,.) interseets P(v, v,) and P(v, v,,) just in the vertex », any
two of v, v, and v, have distance ¢ iff t = ¢'=¢"= ¢/2. Thus the vertices
of I.,(v) have different colours in a c-colouring of V(T',).

In order to obtain the other inequalities, we assume, without loss of gen-
erality, that [I,,(7)| is maximum.

If we assign the same colour to the vertices of J,(%), 0 <k < ¢/2, we obtain
a c-colouring of these vertices, because h<h'<<e¢/2 implies d(v,,v.) < e.

For every k>c/2, any two vertices, v, €J,(), are at distance ¢ iff they
belong to a same set I.,(). Let us assign different colour to vertices vy, k=¢/2,
¢/2 + 2, ..., belonging to the set I ¢2{W). Furthermore we assign to the other
vertices of Jy(T) N J (W) the colour of the vertex of J (D) N I, (W) from which
they have distance less than e¢. Thus we obtain a ¢-colouring of the vertices
of J,.(¥). Of course, to obtain a ¢-colouring of V(T,), the colours associated
to the vertices v, € J,,(Ww), must be different from those ones associated to
the vertices v; € J (W), k<.

Let a(k), k > ¢/2, be the minimum number of the colours, different from
those ones assigned to the vertices of J=(D), ¢/2<k <k, we introduce in this
c-colouring of V(T,) in order to colour the vertices of J.(7).

To prove the other inequalities, we now determine an upper bound for > a(k).
E>c/2
First we remark that the two ¢ distant vertices have both even or odd

distance from 7. Furthermore, for every vertex v, let k, = max {0,k — ¢}
and k, = min {k -+ ¢, max d(v,, v..)}, where the '0;: 8 are the vertices such that
P(@, v;) c P(T, vw). Let v, and v, be the vertices such that P(v, o) C P(v, v)
c P(v, 7). Then the distance k from 7 of any vertex v, having distance ¢
from vy, satisfies k; <k<k,. Thus we consider, without loss of generality, only
the vertices v, such that & = ¢/2 4 2¢, 1 <t<¢/2. We call a(f) the number a(k).

If ¢/2<k<min {¢/,»(T,)} =t and |1..(7)] >2, consider the vertices v,
such that P(7, v.) N P(D,v._x) = {T}. The vertices v, have colours different
from the one of v.,. Furthermore, the number of the vertices Vs, c/2 <k<F,
at distance ¢ from v,, which may have distinet colours is not greater than
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(k—e¢f2)/2 =1, by lemma. Then we have
a(t) < [ Lop(@) |[— [[Lep(@) |+ alt —1) + a(t—2) + ... + a(l) —1].

On the other hand, |I.,(®W)|< |I..(?)|. Then, set t'= max ¢, we have

a(i)>0
t'—1 t'1 -1 _
a(t) + Y a@)y<t’'— Y at) + > a@®)<(t—ec/2)/2.
t=1 t=1 te=1

Therefore, if ' (7,)<¢’, the theorem follows.

If #(T,) > ¢, i.e. t = ¢/, for every vertex v, ¢< k<min {'(T,),3¢/2} =%
the number of the vertices v, k—¢ < k< k, at distance ¢ from v, which
may have distinet colours is not greater than [k — (k — ¢)]/2 = ¢/2, by lemma.
Then, following the above procedure, we obtain

t"—1 =1 t"—1
at) + > at)<ef/2—1— 3 a(t) + > a(l) = ¢/2 -1,
t=1 t=1 t=1

where t'= (t —¢/2)/2. This proves the theorem.

These inequalities are the best possible. For instance, if we consider the
trees such that |I..(?)|= max|I.(v)| and 7(T,) = ¢/2, the lower bound is
attained. If we consider the trees such that |I,,(¥)|= max|I.,(v)| and, for
every J(?), at least one vertex @ exists such that |I.,(w) N (D) |= |L.,x(7) |—1
and for every k, <k <k, J..(®) N J(7) 7 0 results, one of the upper bounds
is attained.

Corollary. If ¢ =2, then y,(T,) = max d(v).
k4
Proof. Two vertices of T, have distance ¢ iff they are adjacent to the
same vertex, i.e. I,,(v) coincides with the set of vertices adjacent to ». If we
assign different colours to vertices adjacent to the same vertex, we obtain a
2-colouring, thus y,(7,)<max d(v).

v

Theorem 4. If ¢ is odd, then y (T,) = 2.

Proof. BSince ¢ is not greater than diameter of T,, at least two vertices
of T, having distance ¢ exist. Then y.(7,)>2. On the other hand, a tree is
a special bipartite graph and two vertices have odd distance iff they belong
to different set, X and Y. If we assign the same colour to vertices of X and
another colour to vertices of ¥, a c-colouring (¢ odd) results.
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Summary

The A-chromatic number, y,(G), is determined for the complement of a cycle when
A s either the set of even integers or the set of odd integers and for a cycle or iis comple-
ment when A is a single integer not greater than their diameter. Moreover, when A = {c}
and G s a tree, lower and upper bounds for y,(G) arve determined.

% k %k



