P. VERHEYEN and L. VERSTRAELEN (*)

Quasiumbilical anti-invariant submanifolds (**)

1 - Introduction

B. Y. Chen and K. Yano proved that every totally quasiumbilical submanifold (1) of a conformally flat space is conformally flat [7]. Concerning the converse, it is known for allready a long time that every conformally flat hypersurface of a conformally flat space is quasiumbilical [3], [9]. This property was generalized by J. D. Moore and J. M. Morvan as follows: every conformally flat submanifold M^n of a conformally flat space \tilde{M}^{n+p} with codimension $p \leq \min\{4, n-3\}$ is totally quasiumbilical [8]. For possibly higher codimension B. Y. Chen and one of the authors showed that every conformally flat submanifold M^n of a conformally flat space \tilde{M}^{n+p} with $p \leq n-3$ and flat normal connection is totally quasiumbilical [6].

Recently one of the authors proved that every totally quasiumbilical totally real submanifold of a Bochner-Kaehler space is conformally flat [10]; for totally geodesic submanifolds see [1], and for totally umbilical submanifolds see [11]. In this direction we also mention the following theorem of K. Yano: every totally real submanifold M^n with commutative second fundamental tensors in a Bochner-Kaehler manifold \tilde{M}^{2n} is conformally flat [11]₂. Based on a characterization for the conformal flatness of totally real submanifolds of Bochner-Kaehler spaces, this result will be generalized in 3. In 4 we will give some results of this type for anti-invariant submanifolds of Sasakian manifolds with vanishing C-Bochner curvature tensor.

^(*) Indirizzo: Katholieke Universiteit Leuven, Departement Wiskunde, Celestijnenlaan 200 B, B-3030 Leuven, België.

^(**) Ricevuto: 21-X-1981.

⁽¹⁾ All manifolds in this paper are assumed to be of dimension ≥ 4 .

2 - Preliminaries (see also [4])

Let M^n be an n-dimensional submanifold of an (n+p)-dimensional Riemannian manifold \tilde{M}^{n+p} . The second fundamental form of M in \tilde{M} will be denoted by h; its components are given by h^{α}_{ij} whereby we agree on the following ranges of indices: $i, j, k, l \in \{1, 2, ..., n\}$ and $\alpha \in \{1, 2, ..., p\}$. By \tilde{R} and R we respectively mean the curvature tensors of \tilde{M} and M, and by R^{\perp} the curvature tensor of the normal connection of M in \tilde{M} . When the ambient space \tilde{M} is conformally flat, M has flat normal connection $(R^{\perp} \equiv 0)$ if and only if all second fundamental tensors A_{ξ} associated with normal sections ξ are simultaneously diagonalizable $[4]_2$. The equation of Gauss may be written as

(1)
$$\tilde{R}_{ijkl} = R_{ijkl} - D_{ijkl}$$
, $D_{ijkl} = \sum_{\alpha} (h_{il}^{\alpha} h_{jk}^{\alpha} - h_{ik}^{\alpha} h_{jl}^{\alpha})$.

Let

(2)
$$L_{ij} = -\frac{1}{n-2} S_{ij} + \frac{r}{2(n-1)(n-2)} \delta_{ij},$$

whereby S and r are respectively the Ricci tensor and the scalar curvature of M. Then with respect to an orthonormal frame the conformal curvature tensor C of M is given by

$$(3) C_{ijkl} = R_{ijkl} + \delta_{il}L_{jk} - \delta_{jl}L_{ik} + \delta_{jk}L_{il} - \delta_{ik}L_{jl},$$

and by a theorem of H. Weyl M is conformally flat if and only if $C \equiv 0$.

A normal section ξ is called *quasiumbilical* if the principal curvatures of M corresponding to ξ , in other words the eigenvalues of A_{ξ} , are given by $\mu_{\xi}, \lambda_{\xi}, ..., \lambda_{\xi}$ where λ_{ξ} occurs n-1 times. In particular, ξ is said to be a cylindrical, umbilical or geodesic section when respectively $\lambda_{\xi} = 0$, $\lambda_{\xi} = \mu_{\xi}$ or $\lambda_{\xi} = \mu_{\xi} = 0$. M^n is called a totally quasiumbilical submanifold of \tilde{M}^{n+p} if there exist p mutually orthogonal quasiumbilical normal sections on M.

3 - Totally real submanifolds of Bochner-Kaehler spaces

Let \widetilde{M}^{2m} be a (real) 2m-dimensional Kaehler manifold with complex structure J. With respect to an orthonormal frame the *Bochner curvature tensor* \widetilde{B} of \widetilde{M} is defined by $[11]_2$

(4)
$$\tilde{B}_{ABCD} = \tilde{R}_{ABCD} + \delta_{AD}N_{BC} - \delta_{BD}N_{AC} + \delta_{BC}N_{AD} - \delta_{AC}N_{BD} + J_{AD}N'_{BC} - J_{BD}N'_{AC} + J_{BC}N'_{AD} - J_{AC}N'_{BD} - 2(J_{AB}N'_{CD} + J_{CD}N'_{AB}),$$

whereby $A, B, C, D \in \{1, 2, ..., 2m\},\$

[3]

(5)
$$N_{AB} = -\frac{1}{2(m+2)}\tilde{S}_{AB} + \frac{\tilde{r}}{8(m+1)(m+2)}\delta_{AB}, \quad N_{AB}' = \sum_{C} N_{AC}J_{CB},$$

and \tilde{S} and \tilde{r} are respectively the Ricci tensor and the scalar curvature of \tilde{M} . \tilde{M} is said to be Bochner flat or is called a Bochner-Kaehler space when $\tilde{B}\equiv 0$.

Let M^n be a totally real or anti-invariant submanifold of \widetilde{M}^{2m} , i.e. $\forall x \in M$, $J(T_xM) \subset T_x^{\perp}M$ [5], [12] (and therefore essentially $n \leqslant m$). We choose an orthonormal frame $\{E_A\}$ on \widetilde{M} such that $\{E_1, \ldots, E_n\}$ is a basis of TM and in this section agree on the following ranges of indices: $i, j, k, l, s, t \in \{1, 2, \ldots, n\}$ and $\alpha, \beta \in \{n+1, n+2, \ldots, 2m\}$. Then, making use of the equation of Gauss, (4) becomes

(6)
$$\tilde{B}_{ijkl} = R_{ijkl} - D_{ijkl} + \delta_{il} N_{ik} - \delta_{jl} N_{ik} + \delta_{jk} N_{il} - \delta_{ik} N_{jl}.$$

Contraction of (6) gives

(7)
$$\tilde{b}_{ik} = S_{jk} - D_{jk} + (n-2)N_{jk} + N\delta_{jk},$$

whereby $\tilde{b}_{jk} = \sum_{s} \tilde{B}_{sjks}$, $D_{jk} = \sum_{s} D_{sjks}$ and $N = \sum_{s} N_{ss}$. Contraction of (7) yields

(8)
$$\tilde{b} = r - D + 2(n-1)N,$$

whereby $\tilde{b} = \sum_{s} \tilde{b}_{ss}$ and $D = \sum_{s} D_{ss}$. From (6), (7) and (8) we find that (see also [12])

(9)
$$\tilde{B}_{ijkl} = C_{ijkl} - D_{ijkl} - \frac{1}{(n-1)(n-2)} (\delta_{il}\delta_{jk} - \delta_{ik}\delta_{jl})(D + \tilde{b})$$

$$+rac{1}{n-2}\left(\delta_{ii} ilde{b}_{jk}-\delta_{ji} ilde{b}_{ik}+\delta_{jk} ilde{b}_{ii}-\delta_{ik} ilde{b}_{ji}+\delta_{it}D_{jk}-\delta_{ji}D_{ik}-\delta_{jk}D_{ii}-\delta_{ik}D_{ji}
ight).$$

Proposition. Let M^n , $n \geqslant 4$, be a totally real submanifold of a Bochner-Kaehler manifold \tilde{M}^{2m} with commuting second fundamental tensors. Then M^n is conformally flat if and only if

$$\sum_{\alpha} (\varrho_i^{\alpha} - \varrho_j^{\alpha})(\varrho_k^{\alpha} - \varrho_j^{\alpha}) = 0 ,$$

for mutually different i, j, k, l where ϱ_i^{α} are the eigenvalues of $A_{\alpha} = A_{E_{\alpha}}$.

Proof. If $\forall \alpha, \beta \colon [A_{\alpha}, A_{\beta}] = 0$, then we can choose an orthonormal basis of TM such that $h_{ij}^{\alpha} = \varrho_i^{\alpha} \delta_{ij}$. Moreover, by the Bochner flatness of \widetilde{M} , (9) becomes

(10)
$$C_{ijkl} = D_{ijkl} + \frac{1}{n-2} \left(\delta_{jl} D_{ik} - \delta_{il} D_{jk} + \delta_{ik} D_{jl} - \delta_{ik} D_{jl} \right) + \frac{D}{(n-1)(n-2)} \left(\delta_{il} \delta_{jk} - \delta_{ik} \delta_{jl} \right).$$

Putting $a_{ij} = \sum_{\alpha} \varrho_i^{\alpha} \varrho_j^{\alpha}$, we get

(11)
$$D_{ijkl} = a_{ij}(\delta_{il}\delta_{jk} - \delta_{ik}\delta_{jl}), \quad D_{jk} = \left(\sum_{t \neq j} a_{ti}\right)\delta_{ik}, \quad D = \sum_{t \neq s} a_{ts}.$$

Consequently

$$\begin{split} &C_{ijkl} \\ &= \left[(n-1)(n-2) a_{ij} - (n-1) \left(\sum\limits_{t \neq i} a_{ti} + \sum\limits_{t \neq j} a_{tj} \right) + 2 \sum\limits_{t \leq s} a_{ts} \right] \frac{\delta_{il} \delta_{jk} - \delta_{ik} \ \delta_{jl}}{(n-1)(n-2)} \ . \end{split}$$

Now the proof can be finished in the same way as the proof of Theorem 1 in [6].

The proof of the next theorem is based on the following algebraic lemma.

Lemma 2 [6]. Let A_{α} be q < n-2 diagonal matrices of order $n \ge 4$ whose eigenvalues $\varrho_1^{\alpha}, \ldots, \varrho_n^{\alpha}$ satisfy (*) for mutually different i, j, k, l. Then by transformations of the type

$$ilde{A}_{lpha} = A_{lpha}\cos\theta + A_{eta}\sin\theta \;, \quad ilde{A}_{eta} = -A_{lpha}\sin\theta + A_{eta}\cos\theta \;,$$

matrices \tilde{A}_{α} can be obtained such that each \tilde{A}_{α} has an eigenvalue of multiplicity $\geqslant n-1$.

Suppose that M^n is a conformally flat totally real submanifold of a Bochner-Kaehler space \tilde{M}^{2m} , m=n+p, with $[A_{\alpha},A_{\beta}]=0$. Choosing an orthonormal frame $\{E_A\}$ on \tilde{M} such that $\{E_i\}$ is a basis of TM which simultaneously diagonalises all A_{α} and such that $E_{i*}=E_{n+i}=JE_i$, it follows that E_{1*},\ldots,E_{n*} are cylindrical normal sections (since $h_{ij}^{i*}=h_{ij}^{i*}=h_{ik}^{j*}$ [5]). Thus from Proposition 1 and Lemma 2 we have the following

Theorem 3. Let M^n , $n \ge 4$, be a conformally flat totally real submanifold of a Bochner-Kaehler manifold $\tilde{M}^{2(n+p)}$ with commuting second fundamental tensors. Then, if 2p < n-2, M^n is totally quasiumbilical.

In case 2p > n-2, either a conformally flat totally real submanifold M^n with $[A_{\alpha}, A_{\beta}] = 0$ in a Bochner-Kaehler space $\tilde{M}^{2(n+p)}$ is totally quasiumbilical or we can use Proposition 3 of [6] to prove that with respect to a suitable frame the second fundamental tensors take the following form

$$A_{n+j} = D(0, ..., 0, \varrho^{j}, 0, ..., 0),$$

$$A_{2n+u} = D(\varrho^{n+u}, ..., \varrho^{n+u}, \varrho^{n+u}_{u+1}, \bar{\varrho}^{n+u}, ..., \bar{\varrho}^{n+u}) \quad (u \in \{1, 2, ..., n-2\}),$$

$$(13) \quad A_{3n-1} = D(\varrho^{2n-1}, ..., \varrho^{2n-1}, \varrho^{2n-1}_{n}),$$

$$A_{2n} = D(\varrho^{2n}, ..., \varrho^{2n}),$$

$$A_{3n+v} = 0 \quad (v \in \{1, 2, ..., 2p-n\}),$$

whereby ϱ^{j} and ϱ^{n+u}_{u+1} are the j-th and the (u+1)-th element, respectively, and

(14)
$$D(a_1, ..., a_n) = \begin{bmatrix} a_1 & 0 \\ \ddots & \\ 0 & a_n \end{bmatrix}.$$

In particular, for a real space form $M^n(c)$ of constant sectional curvature c with $[A_{\alpha}, A_{\beta}] = 0$ in a complex space form $\tilde{M}^{2(n+p)}(\tilde{c})$ of constant holomorphic sectional curvature \tilde{c} , for $i \neq j$ we have $a_{ij} = c - \tilde{c}/4$, such that by the same argument as the one used in the proof of Corollary 1 of [6], M is totally quasi-umbilical when $2p \leqslant n-2$. Because the normal sections E_{i*} are cylindrical and $2p \leqslant n-2$, a_{ij} being constant for $i \neq j$ implies that the normal sections E_{α} are cylindrical or umbilical. By transformations as in Lemma 2 we therefore obtain the following (see also [6])

Proposition 4. Let $M^n(c)$, $n \ge 4$, be a real space form immersed in a complex space form $\widetilde{M}^{2(n+p)}(c)$ as a totally real submanifold with commuting second fundamental tensors. If $2p \le n-2$, then there exist locally n+2p mutually orthogonal unit normal vector fields $\xi_1, \ldots, \xi_{n+2p-1}, \xi_{n+2p}$ such that $M^n(c)$ is cylindrical with respect to $\xi_1, \ldots, \xi_{n+2p-1}$ and cylindrical or umbilical with respect to ξ_{n+2p} . Thus $c \ge \widetilde{c}/4$.

4 - Anti-invariant submanifolds of Sasakian manifolds with vanishing contact Bochner curvature tensor

Let \tilde{M}^{2m+1} be a Sasakian manifold with structure tensors (φ, ξ, η, g) [1]₁, [11]₃, [12]. Analogeous to the Bochner curvature tensor for a Kaehler ma-

nifold, with respect to an orthonormal frame $\{E_A\}$, $(A, B, C, D \in \{1, 2, ..., 2m + 1\})$, the contact Bochner curvature tensor or C-Bochner curvature tensor for \tilde{M}^{2m+1} is defined by [12]

$$\begin{split} \tilde{B}_{ABCD} \\ &= \tilde{R}_{ABCD} + (\delta_{AD} - \eta_A \eta_D) P_{BC} - (\delta_{BD} - \eta_B \eta_D) P_{AC} + (\delta_{BC} - \eta_B \eta_C) P_{AD} \\ &- (\delta_{AC} - \eta_A \eta_C) P_{BD} + \varphi_{AD} P_{BC}^{'} - \varphi_{BD} P_{AC}^{'} + \varphi_{BC} P_{AD}^{'} - \varphi_{AC} P_{BD}^{'} \\ &- 2 \left(\varphi_{AB} P_{GD}^{'} + \varphi_{CD} P_{AB}^{'} \right) + \varphi_{AD} \varphi_{BC} - \varphi_{BD} \varphi_{AC} - 2 \varphi_{AB} \varphi_{CD} \,, \end{split}$$

whereby

$$P_{AB}=-rac{1}{2(m+2)}\left[ilde{S}_{AB}+(P+3)\,\delta_{AB}-(P-1)\eta_A\eta_B
ight]$$
 ,

$$P = \sum_{A} P_{AA} = -\frac{\tilde{r} + 2(3m + 2)}{4(m + 1)}, \qquad P'_{AB} = \sum_{\sigma} P_{AC} \varphi_{CB}.$$

Let M^n be an anti-invariant submanifold of \widetilde{M}^{2m+1} , i.e. $\forall x \in M, \ \varphi(T_xM) \subset T_x^\perp M$, (which since rank $\varphi=2m$ implies that $n\leqslant m+1$). When M is normal to the structure vector field ξ , then M is automatically anti-invariant and $n\leqslant m$ (in fact, then M is an integral submanifold of the contact distribution defined by $\eta=0$ [1]₂; such submanifolds are also called C-totally real submanifolds). When ξ is tangent to M, then M is anti-invariant if and only if ξ is parallel along M [12]. We will consider these two cases separately.

(I) ξ is normal to M.

Then by computation of the Gauss equation involving the C-Bochner curvature tensor of \tilde{M} and the Weyl conformal curvature tensor of M in an analogeous was as in 3, the following result can be obtained by a proof similar to the one given in [10].

Theorem 5. Let M^n , $n \geqslant 4$, be a totally quasiumbilical submanifold of a Sasakian space \widetilde{M}^{2m+1} with vanishing C-Bochner curvature tensor such that M is normal to the structure vector field of \widetilde{M} . Then M is conformally flat.

Next we assume that M has commuting second fundamental tensors. If we choose the orthonormal frame $\{E_A\}$ such that E_1, \ldots, E_n are principal directions on M such that $E_{n+i} = \varphi E_i$ and $E_{2m+1} = \xi$ then each E_{n+i} is a cylindrical normal section and E_{2m+1} is a geodesic section [12]. Therefore the fol-

lowing results can be obtained in the same way as those in 3, (now $\alpha \in \{n+1, n+2, ..., 2m+1\}$).

Proposition 6. Let M^n , $n \ge 4$, be a submanifold of a Sasakian space \widetilde{M}^{2m+1} normal to the structure vector field ξ . If \widetilde{M} has vanishing C-Bochner curvature tensor and M has commuting second fundamental tensors, then M is conformally flat if and only if (*) holds for mutually different i, j, k, l.

Theorem 7. Let M^n , $n \ge 4$, be a conformally flat submanifold of a Sasakian manifold \tilde{M}^{2m+1} normal to the structure vector field ξ , m=n+p. If \tilde{M} has vanishing C-Bochner curvature tensor, M has commuting second fundamental tensors and 2p < n-2, then M is totally quasiumbilical.

When $2p \geqslant n-2$ in Theorem 7 M is totally quasiumbilical or the second fundamental tensors take particular forms as in 3. Moreover if M is a real space form of constant sectional curvature c immersed in a Sasakian space form of constant φ -sectional curvature \tilde{c} normal to ξ and $\forall \alpha, \beta \colon [A_{\alpha}, A_{\beta}] = 0$, then $a_{ij} = c - \tilde{c}/4$ for $i \neq j$ such that $M^n(c)$ is totally quasiumbilical in $\tilde{M}^{2(n+p)+1}(\tilde{c})$ if $2p \leqslant n-2$. In this case $\{E_{\alpha}\}$ can be chosen such that all E_{α} are cylindrical except possibly the last one which may be umbilical.

(II) ξ is tangent to M.

Let M^{n+1} be an anti-invariant submanifold which is tangent to the structure vector field ξ of a Sasakian manifold \tilde{M}^{2m+1} , m=n+p. By the parallellism of ξ along M, M locally is a Riemannian direct product $M'^n \times \mathscr{C}$ where M' is a totally geodesic hypersurface of M and \mathscr{C} is a curve generated by ξ . By choosing an orthonormal frame $\{E_A\}$ on \tilde{M} , $\{A \in \{0,1,\ldots,2m\}\}$, such that $E_0 = \xi$ and $\{E_w\}$ is a basis of TM', $\{w,y,z\in\{1,2,\ldots,n\}\}$, we can prove in the same way as above that when \tilde{M}^{2m+1} has vanishing C-Bochner curvature tensor and M'^n , $n \geqslant 4$, is totally quasiumbilical, then M' is conformally flat. If we take $\{E_A\}$ such that $E_{x^*} = E_{n+x} = \varphi E_x$, then we have $\{\lambda \in \{2n+1,2n+2,\ldots,2m\}\}$

(17)
$$A_{x*} = \begin{bmatrix} 0 & 0 & \dots & 1 & \dots & 0 \\ 0 & & & & \\ \vdots & & & & \\ 1 & & & H_{x*} & & \\ \vdots & & & & \end{bmatrix}, \quad A_{\lambda} = \begin{bmatrix} 0 & 0 \\ 0 & H_{\lambda} \end{bmatrix},$$

where $H_{x^*}=(h_{yz}^{x^*}),\ H_{\lambda}=(h_{yz}^{\lambda})$ and 1 is the (x+1)-th element of the first row and column of A_{x^*} . In particular, if $\forall \alpha,\beta\in\{n+1,\ n+2,\ ...,\ 2m\}$,

 $[H_{\alpha}, H_{\beta}] = 0$, we can choose an orthonormal frame such that

(18)
$$H_{x^*} = D(0, ..., 0, \varrho_x, 0, ..., 0).$$

Therefore, when in this case \tilde{M} has vanishing C-Bochner curvature tensor, 2p < n-2 and M' is conformally flat, then M' is totally quasiumbicical.

References

- [1] D. E. Blair: [•]₁ On the geometric meaning of the Bochner tensor, Geom. Dedicata 4 (1975), 33-38; [•]₂ Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Springer Verlag, New York 1976.
- [2] D. E. Blair and K. Ogiue, Geometry of integral submanifolds of a contact distribution, Illinois J. Math. 19 (1975), 269-276.
- [3] E. Cartan, La déformation des hypersurfaces dans l'espace conforme réel à n≥5 dimensions, Bull. Soc. Math. France 45 (1917), 57-121.
- [4] B. Y. Chen: [*]₁ Geometry of submanifolds, M. Dekker Inc., New York 1973; [*]₂ Some conformal invariants of submanifolds and their applications, Boll. Un. Mat. Ital. 10 (1974), 380-385.
- [5] B. Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 217-266.
- [6] B. Y. Chen and L. Verstraelen, A characterization of totally quasiumbilical submanifolds and its applications, Bull. Un. Mat. Ital. 14 (1977), 49-57.
- [7] B. Y. CHEN and K. Yano, Sous-variétés localement conformes à un espace euclidien, C. R. Acad. Sc. Paris Sér. A 275 (1972), 123-125.
- [8] J. D. MOORE and J. M. MORVAN, Sous-variétés conformément plates de codimension quatre, C. R. Acad. Sc. Paris Sér. A 287 (1978), 655-659.
- [9] J. A. Schouten, Über die konforme Abbildung n-dimensionaler Mannigfaltigkeiten mit quadratischer Massbestimmung auf eine Mannigfaltigkeit mit euklidischer Massbestimmung, Math. Z. 11 (1921), 58-88.
- [10] L. Verstraelen, A remark on conformally flat totally real submanifolds, Kodai Math. J. 4 (1981), 371-376.
- [11] K. Yano: [•]₁ Sur les équations de Gauss dans la géométrie conforme des espaces de Riemann, Proc. Imp. Acad. Tokyo 15 (1939), 247-252; [•]₂ Totally real submanifolds of a Kaehlerian manifold, J. Differential Geom. 11 (1976), 351-359; [•]₃ Anti-invariant submanifolds of a Sasakian manifold with vanishing contact Bochner curvature tensor, J. Differential Geom. 22 (1977), 153-170.
- [12] K. Yano and M. Kon, Anti-invariant submanifolds, M. Dekker Inc., New York 1976.