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On the existence of J(4,2)-structures (**)

1 - Introduction

We study the existence and obstructions to the existence of J(4, 2)-struc-
tures in the sense of Yano, Houh and Chen [3] by using the definitions of
Bernard {1}, and the Stiefel-Whitney, Chern, Euler and Pontrjagin charae-
teristic classes.

2 - Existence

Let V be a O« differentiable manifold, with dim V = » = 2k, and let J
be a C* (1,1) tensor field on V, J =40, such that

Ji+J2=10, rankdJ = % (rankJ? - n);

if J is of constant rank equal to 7, J is called a J(4, 2)-structure of rank r and
V a J(4, 2)-manifold.

The operators I = — J?, m = J* - 1 are the projectors of the almost pro-
duet structure on V given by H=m—1. Let L and M be the corre-
sponding complementary distributions. The tangent bundle TV of ¥V admits
the decomposition TV = L@ M, where L and M are vector bundles of res-
pective dimensions 2»—x and 2n—2r. We have also kerJ = J(M), and
dim (ker J), = n—r=fdimM,, ceV.

(*) Indirizzi degli AA.: J. A. OusiNa, Departamento de Geometria y Topologia,
Tacultad de Ciencias, Santiago de Compostela, Spain; P. M. Gapra, Instituto Jorge
Juan, C.8.1.C., Serrano, 123, Madrid, Spain.

(**) Ricevuto: 13-VII-1981.
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If rank J= n, then J24 1= 0, and thus a J(4, 2)-structure of maximal
rank is an almost complex structure. If rank J = #/2, then J2? = 0, and hence
a J(4, 2)-structure of minimal rank is an almost tangent structure.

A J(4, 2)-structure is nothing but a G-structure on V such that the group &
is the group of matrices of the form

4 —B 0 0
B 4 0 0
(0 0 C o)
0 0o D ¢

where A 4-iB € Gl(r —k; C), C € Gl(n—r; R), and D € M(n—r; R), where
M(n —r; R) is the set of real (n — )X (n —r) matrices. We then have, N(G)
being the normaliser of G:

Proposition 2.1. N(GQ)s= G, and thus, if there exists such a structure
on V, then there exist infinitely many of such structures, all associated, in Ber-

nard’s sense [1].

Proof. We consider the matrix

I 0 0 0

B — ( 0 —1, 0 0 )
0 0 I..., 0}’
0 0 0 Z

where I, , and I,_, denote the identity matrices of degree » — %k and n —r
respectively, and Z = pI,_,, p e R—{0,1}; obviously, h¢ G and h e N(G).
Indeed, if

4 —B 0 0 A B 0 0

(B A 0 0 , —B 4 0 0
7= (0 0 ¢ o) €@, then  g'= ( o 0 C o)

0 0 D ¢ 0 0 ZD ¢

is such that ¢'e G and gh = hy’. Hence G # N(GF).

Corollary 2.2. If there exists a J (4, 2)-structure on the manifold V, then
all the associated G-structures are in bijective correspendence with the set of dif-
ferentiable sections of the bundle FV |G, where FV denotes the frame bundle of V.



[3] ON THE EXISTENCE OF J(4, 2)-STRUCTURES 181
3 - Obstructions to existence

With the notations of 2, let K be the subbundle ker J, and S a subbundle
of M complementary to K. K and S are isomorphic bundles of dimn — 7,
because J induces a vector bundle isomorphism between them.

The real vector bundle L can be made a complex vector bundle on ¥V of
complex dim = v — k; it suffices to define

p+i) X =pX+¢JX, p,geR, XeL,, z€V.
We shall call L both this bundle and the underlying real vector bundle (Lg).

Proposition 3.1. Let V be a J(4,2)-manifold, with dim V = n = 2k.
Then the odd Stiefel-Whitney classes of TV, L and M are all zero.

Proof. The Whitney product theorem applied to TV= L M, gives

(3.1) Wi(TV) = w (LD M) = zhwf(L)u wh_{M) .

=0

Since L can be made a complex vector bundle on V, the mod 2 reduction of
the total Chern class ¢(L) is the Stiefel-Whitney class of the underlying real
vector bundle, and thus the odd Stiefel-Whitney classes of L are zero. Hence
w;(L) = 0 if 4 is odd.

On the other hand, M= K@ S, and hence
j

wi(M) = w;(KD8) = 3T w,(K)ww;_(8),

a=0

but, since K and 8 are isomorphic, we have w,_(K) = w,_(S) and

{i/2
2 w(K)yw w,; (K)=0 if § odd

font}

a=0
w; (M) = <
ifz
: 2 2 wo(K)w w; oK) 4 w,(K)® = w,,(K)* if j even.
a=0

Suppose now that 2 is odd and let ¢ be such that 0 <i<h. Then 7 is odd
or h—+¢ is odd. In the first case, w,(L) = 0; in the second, w,_;(}M) = 0.
Hence, it follows from (3.1) that w,(TV) = 0.
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In particular, w,(TV) = 0, and follows the
Corollary 3.2. A J(4,2)-manifold is orientable.
With regard to the even Stiefel-Whitney classes we have

Proposition 3.3. Let V be a J(4,2)-manifold with dim V = n = 2k;
then the even Stiefel-Whitney classes have the expression

W(TV) = 3 (edL))p— w;(K)2,

it+j=h

where h =1, ..., k, and (), denotes reduction mod 2.

Proof. Sinece M= K@S and K is isomorphic to § we have
20,;( M) 2 W () wy;_o(K) -+ w;(K)2 = w,(K)?,
a=0

from which, since w,(L) = w,(M) = 0 if 1 is odd,

W T(V) = 3 wyu(L)wwy, (M) = 3 (edL))s w;(K)2.

2§4-2j=2h iti=h

Proposition 3.4. Let V be an oriented manifold with dim V = n = 2k,
and suppose that the Euler class e(TV) is non null. If V admits a J(4, 2)-struc-
twre of rankr, then H*—(V;Z)5£0 and H*(V; Z)s 0. Furthermore, if
H\V; Z,) = 0, then H"(V; Z)# 0.

Proof. If there exists a J(4, 2)-structure of rank » on ¥V, we have ¢(TT)
= e(L)w e¢(M), where e¢(L)eH*V;Z), and e¢(M)ec H»(V;Z). Since
e(TV) # 0, we deduce e(V) 5= 0 and ¢(M) = 0. If H(V; Z,) = 0, then w,(K) =0,
w,(8) = 0, and thus K and § are orientable. Hence, ¢(M) = e(K)w ¢(S),
where ¢(K), e(8) e H*"(V; Z) and are non null. '

Since, in these conditions, the bundles K and S are orientable, we have

(M) = e(K)w e(K )= e(K)2 ; on the other hand, the top Chern class of a com-
plex vector bundle coincides with the Euler class of the under lying real vector
bundle, and hence e(L) = ¢,_i(L). Thus we obtain

Proposition 3.5. If V is a J(4,2)-manifold with dim V = n = 2k, the
Euler class e(TV) has the expression e(TV).=. ¢, (L) e(I).
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Turthermore, if H(V; Z,) = 0, then
e(TV) == ¢,_(L)w e(K)2.

Proposition 3.6. Let V be a J(4,2)-manifold with dim V = n = 2k,
Then the Pontrjagin classes have the expression

i

oap T z {ei L)+ 2 Z (—1)%i_o( L) eipo L)} z (Kyw p;_o(K).

i+i= a=1 b=0
Proof. Let L be the conjugate bundle of L. Then L®g C is isomorphic
to I @ L; hence, since o;(L) = (—1)e;(L), we have

PAD) = (—1)iea( L@ C) = (—Die L@ L) = (=11 3 eD)w D)

at+b=2i

= (—1)420 (L)< eri( L) — 26 (L) earr ()
+ 2e5(L)w Cyio(L) — oo + oo+ (—1)F2¢, 4 (L) €:a(L) + (—1)i0f(L)2}

= oD 2 3 (— 1)t D) iyl L) -

a=1

On the other hand, since M= K@ 8,

2p;(M) =2p;(KPH8) =2 Z Po(H ) po(S)

btc=j
2 3 poE)wp(K) z Kyw p; J(K).
b+c=:r b=0
The result follows from the relation
2pu(TV) =2p, (LA M) = 3 pi 2p,(M) .
+i=hn

Proposition 3.7. Let V be a J(4, 2)-manifold with dim V== n = 2k.
Then

(pa(TV))z = z Wy, (L) 3o w,(I0)*,

F==h

Proof. BSinee reduction mod 2 of the Pontrjagin class p,(TV) is equal
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to the square of the Stiefel-Whitney class w,,(TV), we have

(PTV))e =1woa(T(V) )2=(wpn( LD M) )2=( 3 wi(L)w w;( M) (> wa(L) wy(M))

i+i=2h 6+bd=2n

= > > ({wil L) wa( L)} {oo; (M) wy(H)}) .

iti=2h atd=2p

But, since the odd Stiefel-Whitney classes of L are zero by Prop. 3.1, we have

2h 2h
S S wlL) v we(L) = 14wy (L) wy(L) + ... + wy( L) (L)
=20 a=0
h
— Z wgi(L)U 'wza(L)ﬁ
i=q=0
and hence
h

(Ph(TV))z = z Z ({ Z Wy (L) wea(L)}V {’wz:‘(ﬂI)V wzb(ﬂ[)})

j=h—i b=h—a i=a=0

= 2 (L) wy(M):= 3 wy(L)*w w;(K)*.

i+g=h +i=h
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