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C. SurrI (*)

Remarks on the convergence

of cyclic coordinate methods (**)

1 - Introduction

In the recent paper[1], Bazaraa, Shetty and Goode presented some con-
vergence conditions, concerning combinations of minimization algorithms and
objective functions. The same topic had been treated from the author in the
two previous papers [4] and [3].

In this note relations are established among the classes of methods and
functions which have been examined in [1], [4] and [3]. Namely they are shown
the equality of the algorithms and the equivalence of the funetions, from a
geometrical point of view. Moreover the conditions, formulated in [1] on the
objective functions, are made more precise, evincing in which interpretation
they are valid or not. Finally apparent discrepancies among the results pre-
sented in [1], [4] and [3] are explained.

In section 2 the previous work in the area is briefly mentioned. In see-
tion 3 the discussion follows.

2 ~ Premise

In [4], the author examined the possibility of nongradient unconstrained
minimization algorithms entering the cyelic search type of path, first illustrated
by Powell in [2], and proved that the methods considered can generate the
above loops, when applied to an objective function F(z), # € R™, only if they
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construet a sequence of points {#?} >1, such that F(x*+1) < F(a?) Vi, by spanning
m linearly independent directions &, d,...,d*, k>1, where (dj, d;,...,d},)
=(d¥, &, ..., d") VEk, in a constant order (Theorem 4.6 [4]). Moreover the author
proved (Theorem 4.6 [4]) that this cyelic behaviour cannot oceur, when exact
minimizations are performed along the search directions, if the objective func-
tion satisfies the following assumption

(a,) F' is bounded below and strictly convex.

We shall define such functions as comprising the class £2,. In the proof
of Theorem 4.6 [4], it was shown that the hessian matrix H of the objective
function must be singular at all points of any limit eycle, if the line search
is assumed to find the first local minimum along the line, so that the following
inequalities are satisfied

(1) F(att) = F(o' + ;a5 < F(a* + 2d5) < T (*)
Vi1, 1<j<m, k>1, 4i=j-4+mk, A€[0,e2], &>0.
Subsequently, in [3], some improved conditions have been provided, namely

(¢;) if AIcR»: det H(x) =0, zcl, meas] = 0;
(cp) if ITCcR™: det H(z) = 0, veI, and meas I % 0, F(x) 5= const, vel;

(c;) if I c R detH(m) =0, zel, and measI =0 and F(z)= const,
zel, I ,UIL,V..UIL,, where I, 1, ..., I, are segments belonging to a
basis of R,

Conditions (e;), (c,) and (c;) are sufficient to guarantee the numerical con-
vergence of the cyelic coordinate methods, not only when every step is perfect,
in the sense precised by (1), but also when some arbitrary steps are made,
provided that these steps are less than or equal to the last optimal step [3].

In their recent paper [1], Bazaraa, Shetty and Goode consider the class
of minimization algorithms, which perform exact line searches along mutually
orthogonal directions, where these are interpreted as finding the absolute min-
imum along the line, that is x*! such that

(2) Fat) = Fai - 2d5) <F(w + 2d) < Fa?)

Vi1, 1<j<m, k>»1, i=j+mk, VYA>0.
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For this class of methods, they establish convergence to a stationary point
for functions of the class 2, defined as satisfying the following assmmption

(a,;) F is continuously differentiable and has a unique minimum along
any line.

3 =~ Discussion

We first note that the classes of n-dimensional minimization algorithms,
considered in [4] and in [1], coincide, as eyclic loops necessarily imply identical
sets of directions and a constant order of searching them.

On the classes of objective functions, we observe that (a,) is satisfied in
assumption (a,), i.e. £,CQ,. Namely, from an analytical point of view, the
definition of £, [4] is more restrictive than the definition of 2, [1], because
the first requires the positive definiteness of H(») Ya. However, from a geo-
metrical point of view, for m>2, £, is equivalent to Q,, in the sense that any
fanction, or of £, or of Q,, defined in B», m>2, has convex and connected
level sets. In other words, (a,) implies the unimodality of ¥ along every line:
that results clear from the use of assumption (a,) in [1].

In order to better show that (a,), as (a,), concerns the unimodality of P
along each line, let us examine the following situation. Namely let us assume
that only the uniqueness of the global minimum is required by (a,) for #.
Therefore I' could possess one global minimum and one (or more) local min-
imum along some line. But, in this case, it can exist a line, along which the
global minimizer is not unique. Let us examplify that, by simply considering
a biconvex function defined in B2 and having global minimum in (0, 0) and
local minimum in (0, C). Its projection along every line presents at most one
global minimum, but, for example, along a line passing through the point
(0, 0,.F(0, ) and tangent to the connected component, containing (0, 0, (0, 0))
of the set of level F(0, C), it presents two global minima with equal value,
that is two global minimizers. On the other hand, this situation results for-
bidden from the use of assumption (a,) in [1]. In order to prove that, let us
assume that Fe (2, can have many minimizers along some direction d,
as figured in the following Fig. 1 and Fig. 2.

./
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But in the above cases, an optimun step s(z, d) > 0, from « along d, does
not guarantee

(3) Me)>0 Vex>0,

where h(e) = inf {F(x) — F(z + s(z, d)d): s(z, d)>e¢, # € R, |d|= 1}, and that
invalidates the proof of the lemma given by Bazaraa, Shetty and Goode;
therefore it is clear that an unigue minimizer is intended in [1]. In addition,
we shall show that also the conclusion of the lemma is false when the min-
imizer is not unique. In order to do that, let discuss in detail the case figured
in Fig. 2. In this particular case d is a constancy direction for F with respect
to g, where ¢ = I(%), in the sense of the following definition [3]:

(dy) if pe R and B(g) = {w € R»: F(x) = g}, a constancy direction for F
with respect to g is a direction d s.t. |dj= 1 and Jov € B(p) and y € R: (x + Ad)
€ B(g) YVie[0,ul.

Definition (d;) concerns the class of objective funetion having linear seg-
ments on some level surfaces, that is the class 2, of I/ 5.t. Jp € R and (2, y) € R™:
F(z) = F(y) = p and F(z -+ Ay —2)) = ¢ YAie[0,1][3]. Let further intro-
duce the class 0, of lower bounded functions F' s.t. 3 a pair of sequences {z,}, .y
and {Y.},ex: F(2.) 7= Fly,) Y, and minlim, ||z, — y.] > 0, but for any sequence
of scalars {1.},exs A €10, 1] Vn, it is lim, F(z,) = lim, F(y,) = lim, F(z, + 2,
(Yn—22)). To Q, belong functions having curved segments on some level
surfaces, where the curvature radius tends to infinity [3]. The functions F e Q,
possess pseudoconstancy directions in the sense of the following definition [3]:

(d,) the direction d, |d] =1, is a pseudoconstancy direction for F, if 1
{#,} and {d.} and € R:lim, (@, + 2d,) = lim, F(x,), YA [0, u].

Now, if assumption (a,) concerns the uniqueness of the minimum, but non
of the minimizer of ¥, there exist functions F € 2, N 2,5 0 (or € 2, N 2,54 0).
On the other hand, in [3] has been shown that numerical non convergence can
oceur by applying cyclic coordinate metheds to the funclions ' € 2, (or € £2,):
therefore the conclusion of the lemma in [1] is false, when the minimizer is
not unique.

The case figured in Fig. 2 occurs in Powell’s examples [2], when 2 and d
are the asymptotic points and search directions, in fact those functions belong
to Q,[3]. About the Powell’s examples, let now observe that for them, on
the limit path

(4) (—1,1,—-1)—-(1,1,~1) - (1,—1,—1) - (1,—1,1)

- (_17 —'1; 1) - (_17 1’ 1) - (""1: 17 "‘1)
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it is det H = 0 and F' = const, moreover the segments of (4) span all R3: so
none of the conditions (c,), (c,) and (c;) is satisfied. At contrary, for the Ba-
zaraa, Shetty and Goode’s function f[1], on the claimed cyelic path (4) it is

detH=10 for —1l<@;<—1 or <oy <, v, =1, &y =—1,
det H=10 for o, =1, t<az,<1 or —1<pyg—3, @y =1,
detH=10 for =1, ¢,=—1, —1<z,<—3% or F<w, <,
det H=10 for <@, <1 or —l<m<—3%, 2y =—1, rg=1,
det H=0 for @, =—1, —1<a,<—1% or t<a, <1, =1,
detH =0 for @ =—1, @y=1, $<@y<] or —1l<wy<—1,
and
f # const.

Therefore f satisfies condition (¢z), nevertheless numerical non convergence
occurs. For clarifying the above diserepancy, we shall analyze the performance
of the onedimensional minimization in this examined case. For this purpose,
we note that if f is minimized, for example, from 2! = (—1 — & 14 ¢/2, —1—¢/4)
along (# -+ A(10 0)), 2> 0, and if the performed line search satisfies assump-
tion (2), the point m, = (14 ¢/8, 1+ &/2, —1—¢/4) is found; while, if the line
search satisfles assumption (1), the point m,= (—1- ¢/8,1 -+ e/2, —1—¢/4)
is individuated. In fact f(m,) =1+ e/4(} 4 £27/16) is the absolute minimum
and f(m,) =1+ e/4(1 4 27 /16) is the first local minimum along the search
direction. Therefore, by applying the axial method to # from #! under as-
sumption (2), the sequence giving eyelic behaviour can be obtained; otherwise
the procedure should be stable. It follows that the interpretation of the one-
dimensional minimization is of primary importance if we are to reach con-
clusions on the convergence of the n-dimensional minimization algorithms.
For this purpese, we mention that the convergence theory of descent minimi-
zation algorithms applied to non convex objective functions, usually requires
that the iterate points are restricted within a neighborhoed of the minimum.
In other words, it is assumed that inequality (1) is satisfied when optima steps
are performed and that, when some arbitrary steps ave allowed, they are less
than or equal to the last optimum step. Therefore, only a line search, inter-
preted as in definition (1), is significant from an operative point of view,

Acknowledgment. Thanks are due to G. Resta for the interesting con-
versation on this topie.
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Riassunto

In questa nota sono discusse alcune condizioni di convergenza, riguardanti sia gli algo-
ritmi di minimizzazione che le junzioni obieilivo, recentemente formulate nel lavoro [1].
Esse sono rese pity precise sulla base dei due precedenti lavori [4] e [3]. Dalla discussione
viene messo in risalto il ruolo fondamentale che la ricerca di linea riveste nmei problemi di
convergenza dei metodi a coordinate cicliche.
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