Riv. Mat., Univ. Parma (4) © (1983), 95-103

LUiGI GRASSELLI (%)

Subdivision and Poincaré duality (**)

1 - Intreduction

Adapting the subdivision theorem for mock bundles [1] in the case of geo-
metric cocycles [4], we prove the independence of orientations and subdivisions
for geometric cohomology groups.

A subdivision theorem for simplicial algebraic cocycles and an alternative
description of the subdivision of a geometric cocycle are derived.

A duality map v between cohomology and homology of a cycle K [6] is
then introduced: by means of an extension to cycles of a Cohen’s theorem
about cellular dual structures ([2], prop. 5.6), v is proved to be, if K is an
oriented manifold, the Poincaré duality isomorphism.

2 « Notations and preliminar definitions

See [5] and [4] about ball complexes: Sd(K) will be the r-derived subdi-
vision of a ball eomplex K. An oriented ball complex is a ball complex in
which each ball is arbitrarily oriented.

We always consider on K X I the orientation induced by K.

For definitions and notations about cycles see [4] or [6].

A geometrie (g.) g-cocyele & over an oriented ball complex K is a pair
§/K = (D¢, ps), where E: is a polyhedron — called total space — and ps: Ee
—|K|—|Ke*| is a pl map — called projection —, such that, for each k-ball ¢

(*) Indirizzo: Istituto Matematico, Universith, Via Campi, 41100 Modena, Italy,
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in K (k>gq), p;*(o) is a (k—¢) oriented cycle whose bomldai'y is piH(d0): pii(o)
is called bleck over ¢ and is usunally dencted by &(o0).

Further, we must have
(1) TE SI:_l(aG) = 8(5(77)7 5(0')) = 8(77 o) y

where ¢ is the incidence number ([4], def. 1).
Two g. g-cocycles &, (¢ = 0, 1) are cohomologous if there exists a g. g-cocycle
7 over K X I —called cohomology —such that

]I X {0} = &,, plE {1} = —§&.

Hyg(K) will denote the group of the cohomclegy classes of g. g-cocycles
over I{ with the disjoint union and & will represent both the cocyele & and
the cohomology class [£].

Let ¢ be a (¢ -+ 1) ball in an orviented ball complex K and let (4, B) be
a pair of points with sign e, and g; if p: {4, B} — 00 is a map such that
p(4) egcd, p(B) ech, with e, o g-faces of o, we say that 4 and B are con-
nectable in ¢ if ([4], def. 5)

glety, 0) ey = —e&(ap, 0) &5 .

A singular geometric (sr.g.) g-cycle in a polyhedron X is a pair (P, f),
where P is an oriented eclesed g-cycle and f: P — X is a pl map.

Two sr.g. g-cycles (Py, f,) and (P,, f,) in X are homologous if there is an
oriented (g - 1)-cyele @ and a pl map F': Q — X such that

(1) 0Q = P, U~ (—P,), (2) F|\P, = f,, F]szfg.

The equivalence classes of sr.g. g-cyeles in X given by the homology re-
lation, together with the operation of disjoint union, form a group H(X) called
the sr.g. homology g-group. :

See [6] for more infermation about this geometric description of homology
groups. ‘

Every cycle can always be supposed to have a collarable boundary, up to
(co)homology. : .

The simplicial geometric (sl.g.) homology group Hff’(K) of a simplicial com-
plex K is defined in the same way starting from sl.g. g-cycles in K;-i.e. pairs
(L, f), where L is a triangulated ¢-cycle and f: I — K is simplicial.

By the simplicial approximation theorem it is easy to prove that the map
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w,: HO(K) — H,(|K|) obtained by considering a slg. ¢-cycle in K as a sr.g.
g-cycle in K is a group isomorphism. ,

A slg. g-cyele (L, f) in K such that w, (L, f) is a given sr.g. g-cycle (P, g)
is called a simplicial approximation of (P, g).

" The relative homology for a pair (X, Y) is obtained by counsidering (P, f)
such that P is boundered and f(oP)C Y. ‘

3 -~ Subdivision theorems
‘Let I be an oriented ball complex.
Prop. 1. Hg¥K) is independent of the orientation of K.

Proof. If K is a different orientation of K, we denote by & the ball
o€ Il with the orientaiion of K.

If £/K is a g. g-cocyele over K we build & g. ¢-cocycle E/]f over K with the
same total space and the same projection by orienting the blecks &(&) in the
followihg way. Let & be 1 or —1 whether or not & has the same orientation
of ¢; then define &(5) = e£(o).

The map & — £ is a group isomorphism between Hge(K) and Hg(K).

By Prop. 1, if K'<K and K is oriented, we may assume, in what follows,
K’ oriented in such a way that the balls in K’ subdividing balls in K of the
same dimension have the induced orientation and the other ones are arbitrarily
oriented. ’

Prop. 2. If K'<K and §/K' is a g. ¢q-cocycle over K', (FHe, p;) is also
a g. g-cocycle over K, called amalgamation of &.

.Proof. Itis clear that the blocks over the g-balls of I are 0-cycles, since
they are formed by isolated peints.

The proof is then induective, considering, as blocks over the generic n-ball
¢ of I, the blocks over the n-balls ¢, of K’ subdividing o, glued over the
boundaries not included in d¢. The glueing is possible, since o; are supposed
to have the orientations induced by o, i.e. coherent orientations.

Def. 1. The map Ag?: Hgo(K') — Hge(K) defined by Agu&/K') = &K is
called amalgamation. T

It is casy to see that Ag7is a well-defined group homomorphism; in order
to prove that it is an isomorphism we give the following
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Prop. 3. Let §/K, & /K be g. g-cocycles having the same total space Fg
and projections ps , pe, such that &(o) = &,(0), for each o€ K. Then &, and ¢,
are cohomologous.

Proof. We build the cohomology between &, and & by considering the
g. g-cocycle £ over KX I with E;XI as total space and the projection pe in-
ductively defined in the following way.

Let o be a g-ball of K XI;if o € KX {i} (1 =0,1), we define £(¢) = (—1)°
“(§:(0) % {i}) and ps = p¢,, otherwise &(o) = 0.

Now assume & defined over K xIt-D and let ¢ be an s-ball of KxI HE
may be either a ball of one of the bases of K X I or the produect of an (s —1)-
ball & of K with I.

In the first case we define p: as the restriction of Pz, Or pg, respectively;
in the second case let B = & (o) X I and note that, by induction, we can think
pe already defined on 9B.

Since X I is contractible to an internal point @, p:|,, is homotopie to the
constant map «, i.e. there exists a map I from a collar ¢BXI of 8B in B to
aXI such that F|;..0 = Pilosxio) 204 F |, =2; defining F(B — 0B X I)=ux,
we get an extension of ps on B.

This construction, repeated on each s-ball of K x I, proves this lemma.

Prop. 4. Let {/K be a g. g-cocycle over K; there exists a g. g-cocycle
£ over Sd(K), called a subdivision of & such that Age(f)/K = £/K.

Proof. The proof is by induction on the dimension of K; if dim K<gq
the theorem is trivial.

Assume the statement true for dim K <m and let K be an (m -~ 1) dimen-
sional ball complex; we can imagine £/8d*(K™) already built with the required
properties.

Let o be a generic (m - 1)-ball in K and o* the isomorphic image of an
(m 4 1)-simplex o, of S8d*(g) such that o**cfrl.

Let #* be the pl map making this diagram commute

-0~ = dox I

¢

hd

T

do

77‘*
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There exists a triangulation J of ¢ — ¢* such that
(i) m*:J — 8d*%o) is simplicial, (i) Ju a*<lSdi(0'),

(iii) J U ¢* has the orientation induced by Sd*(o) (and hence by o).

By induction, £|S8d%(ds) has already been built; since z* is simplicial,
[Hgy(7*)}(£) is a g. g-cocyele # over J (see[4], prop. 9) ; we obviously may assume
B, o Ey xI with # (8d*(290)) = By x {1}, #(00%) = Eyx{0} and identify the

polyhedra.
We then define £(0) = &(¢) and p.: £(o) —J U ¢* in the following way.

Fad ! 7
On the collar By xI & B, of &o) let p, =p,; on &o) — (HyxI) let p,
be an arbitrary extension of p, | p-xioy 10 0F (for example as in Prop. 3).
&

If we orient the blocks over the balls of Sd*(K) which subdivide balls of K
of the same dimension with the induced orientations, and the other blocks
in such a way that the incidence condition works, we obtain a g. g-cocycle
over J U o*; since J U o*<1Sd*(o), its amalgamation is a g. ¢-cocycle over
8d (o), whose restriction to Sd*(de) is just the & built by induction.

Repeating the construction for each (m + 1)-ball ¢ in K, we get a g.
q-cocycle £ over §d*(K) having F: as total space and the projection formed
by the unions of p; (the construction works because the various £; coincide
on the boundary with the cocycles already built by induction).

Since we have E(a):(Ag"(f)) (o) for each ¢ € K, Prop. 3 proves the theorem.

Prop. 5. If K'<K, then 4ge: Hgo(K') - Hge(K) is an isomorphism.

Proof. 1If {/K is a g. g-cocycle over K, let » be the first integer such
that Sd"(K)<K’' and let £/8d7(K) be the g. g-cocycle obtained from &/K by
means of repeated applications of Prop. 4. Then &'/K'= Age(£/Sd"(K)) e Hgo(K")
is such that Ag«(&'/K') = &/K and hence Ag? is epimorphic.

If #/KXI is a cohomology between Ag«&)/K and Agu&,)/K, the same
technique works by using Sdr(K xI), showing that A4g¢ is one-to-one.

Prop. 5 shows the invariance of Hg¢(K) under subdivisions; if K, and K,
are subdivisions of the same polyhedron P, we denote the isomorphism bet-
ween Hge(K,) and Hgy(K,) again with Age.

The subdivision theorem for geometric cocycles, together with the natural
equivalence g, : Hg'(K) — He(K) defined by (see [4])

[oa(€))(0) = 2, e4s
4€é(0)

allows to introduce the idea of subdivision for simplicial algebraic (sl.a.) cocycles
on simplicial complexes and to deduce an algebraic subdivision theorem.
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In fact, defining A7: HY(K') — H«(K) as the isomorphisma which makes the
following dngmm commute

Hy 5y 2 ! 7
g Hy (K)
96!{” l 7 (pjt
Rk )A g9k

we can deseribe amalgamation and subdivision in He(—) in a very simple way.

Prop. 6. Iffe Hoy(SdYK)),then A«f): S(K) — Z is defined by [A(f)](e)
= Y f(ar), for each ae§,(K).

adca »

Now suppose fe H¢(I) and choose, for each o€ 8, (K), o ¢-simplex «
€ 8,(Sd¥(a)); let f(ag) be the union of |f(o)| points all having the sign of f(o)

and pes: &(ow) > Gg an arbitrary map. If ¢e8,.,(K) and o, are its g-faces, let
q+1 a+1

®; = og,; since f(0o) = 0, the points of U &(o;) = U &(e;) are pairwise connec-
i=0 i=0

table. If (4, B) is a pair of connectable points, connect them by an oriented

1-simplex ¢ and let a,, be the sequence of simplexes of Sd'(s) «, = s?, s
ey SE gy $1TL, 81 = ap, where s7< 5711, 521 subdivide ¢ by (#/2 —1) internal

n—27 “p—17

pomts C; and define p,: ¢t — o by setting
pC) s, pdA) =pid), pdB)=psB)

and extending p, linearly.
Repeating the construction for each pair (4, B) on ¢ and for each o € §,,,(K),.
we get a g. g-cocycle E/SdYKe+); set

f = @angeny(€) = @og(£) € H(SAHEK)) .

Prop. 7. If fe H(K) and ]‘qu(Sdl(K)) is the sl.a. g-cocycle Just built,
then A«(f) = f, ie. fis a subdlvmon ot f. :

The above description of the subdivision of a sla. g-cocycle allows an
alternative representation of the subdivision of a given g. g¢-cocycle.

Prop. 8. If¢/Kisag. g-cocyele over K and f = gx(&), consider &/Sd(Ie+) ‘
—as in the ‘Lbove construction — and let §/Sd1(K ) be its cone extension ([4],

prop. 6); then 5 is a subdivision of é&.
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4 - Poinearé duality

If K is an orientable n-cycle, we may assume a coherent orientation on its
n-balls (Prop. 1).

Since a g. ¢-cocycle & = (H:, p:) over an oriented n-cycle K is a sr.g.
(n —gq)-cycle in |K| ([4], prop. 2), we may consider the duality map x:
Hyy(K) - H,_,(|K|) defined by thinking of (He, p:) € Hgy(K) as an element
of H,_ ,(|K]|).

Prop. 9. The duality map %, is a well-defined group homomorphism.

Proof. Let n/KXI be a cohomology between & /K and &,/K; then I,
is an oriented (n - 1—g)-cycle in [KXxI| such that 0F, = B: U (— B,)
(4], prop. 2) and so (B,, mop,) — where z: | K X I|—|K| is the natural projec-
tion ~is a homology between the sr.g. (n— g¢)-cycles (Be , ps)) and (g, ps,).
The proof of p(&) U p(&,) = (& U &) is evident.

Prop. 10. If K is an oriented n- cycle and K'<I{, the following dlagmm
is commutative

Hy 7y
A}q

Hn-g (1K1)

¥
Hg ??l{j

If M is a combinatorial n-manifold, let M* denote the dual ba]l complex
and oFf € M* the dual of « in M.

Prop. 11. Let (L, f) be a relative sl.g. g-cyele in an oriented n-manifold
(M, 0M) (¢<n), such that f: SdY(L) — Sdy(M) is also simplicial. Then (L, f)
is a g. (n — g)-cocycle over 3[* such that the (% — ¢)-blocks have the orien-
tation induced by L.

Proof. We have to prove that, if dima =14, f1(«*) is an oriented
(q —1)-cyele such that of Y(«*) = f~H0u*). .

A simple extension of ({2], 5.2) proves that f(«*) = {b(0y) ... b(os) ]|t

<f(0y), 01< .. < O €L} and f~Y0o*)={b(0y) ... b(os) |x < f(01), 01 < ... < or€ L}

U (fYa*) N oL). ’
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It is clear that each simplex of f~}o*) is face of a (q — i)-simplex of f~}(a
It B = b(ay) ... b(0e_i_s) is a (¢ — ¢ —1)-simplex of f~Y( )y p is face of e‘nctly
one (g — i)-simplex of f=(o*) if f e Sd(0L) or = f(ay), i.e. if f e f1(da*); it
any other case f§ is face of exactly two (g — ¢)-simplexes of f~1(e*). This is
proved by the fact that there are exactly two h-faces in a (h 4- 1)-simplex
containing a given (h —1)-face.

Since L is oriented, all the blocks over M* are orientable and so we may
orient the balls of M* and the blocks over them in such a way that the inci-
dence condition holds.

Note that, since the n-balls of M* are coherently oriented, the blocks over
them have the orientation induced by I

Prop. 11 is an extension of prop. 5.6 in [2] to cycles.

Prop. 12 (Poincaré duality theorém). If M is an oriented n-manifold, the
duality map y,: Hgo(M) — H,_,(| M |) is a group isomorphism.

Proof. (i) wy is an epimorphism.

Let (L, f) be a simplicial approximation of a given (P, g) eH, ,(|M]) in
M such that f: SdY(L) — Sd*(M) is also simplicial. Then, by Prop. 11, (L, f)
is a g. g-cocycle over M* and so, by Prop. 10, Ag«(L, f) is a g. g-cocycle £ over
M such that wy(&) = (P, g).

(ii) wa is a monomorphism. Let (@, F) be a homology between War(&y)

= (L, f) and yu(&,) = (L, f,) such that L, U (— L,) = 28Q is collared in Q.

1t L, = L, %[0, i and L, = L,x ]}, 1] are open collars of L, and L,, con-
sider F:Q —| M xI| defined by

F = f,xid: L, — M x[0, I,

Let R, 8 besuch that |[R|=Q, S<M XI and F: R—S is simplicial; then,
by Prop. 11, (R, F) is a g. g-cocycle over S§* and, since (R, F) MM x{0} = &
and (R, F)]Mx{l} = —&,, the amalgamation of (R, F) over M xI is a co-
homology between &, and &,. ;
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Riassunto

8i prova, in modo costruttivo, Uinvarianza per suddivisioni dei gruppi di coomologia
geomelrica ed algebrica e se me deriva wna dimostrazione geometrica del teorema di dualita
di Poincaré.
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