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A weak formulation of the 2-point boundary value

problem for hyperbolic equations (**)

0 ~ Introduction

While studing [11], the question of existence of solutions for abstract
hyperbolic boundary value problems of the form

(0.1) d2ufdi + A{f)u = f(t, u) 0<t<<T
By = a;;u(0) + a;,1'(0) 4 by u(L) + byu'(T) =0,
Byt = a5,u(0) -+ @s,0'(0) + boyu(T) 4 bypu'(T) = 0,

(0.2)

the question of a weak formulation arose. Here we assume that «: (0, 1) — V
is a Hilbert space valued function, A(t): V — V* (the dual) is a linear map,
and f is not necessarily a linear map. The Cauchy problem (B,u = «(0),
Byu = %'(0)) had already been given a weak formulation by Lions [6] and Lions-
Magenes [7]. In this paper we give a weak formulation for the general two-point
boundary value problem above, which agrees with the formulation of Lions-
Magenes in the case of the Cauchy problem. Nonhomogeneous conditions are
also considered for some special cases of B, and B,.
Our work can be applied for instance to problems of the form

o2
w2 A, e o) = 1l ) @) e (0, 1)xQ,
u(t, &) == 0 (t, ) e (0, T)x oL,
- By = a4 u(0, @) 4+ a,u,(0, ) 4 byyu(L, @) + bpu (T, 2) =0 208,

Byt = a5,u({0, &) + agu, (0, ) + by u(T, %) ++ by, (T, 2) = 0 zeld,

(*) Indirizzo: Dept. of Math., JTowa State University, Ames, Yowa 50011, U.S.A.
(**) Ricevuto: 6-XI-1981.
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where 0 < T' < + oo, 2 is an open bounded subset of R», and the 4-tuples of
real numbers, (@, ¢,, 011, bys) a0A (Cay, Qe Doy, bys), are assumed to be linearly
independent in R*. Observe that we are prescribing boundary conditions on
the entire surface of the c¢ylinder (0, 7') x 2. Above we have indicated a Dirichlet
boundary condition on the lateral surface (0, T') x 62 although this is not es-
sential. A Neumann condition or boundary conditions of mixed type could
also be prescribed.

The results of this paper concern only the formulation of the wealk problem.
In subsequent papers [11],; we shall prove existence theorems, under suitable
hypothesis, for problems of the above type.

1 - Preliminaries

Let H be a real separable Hilbert space with norm |-}, and let u: R — H
be a function of the real variable ¢ taking valuesin H. We say that w € C(0, T; H)
if » is continuous from (0, 7') into H (with the norm topology). Similarly we
say that « e C([0, T]; H) if « is continuous from [0, 7] into H. We employ
the following notations.

i
om0, T; H) = {ue G0, T; H): %ﬁi: € 0(0, T; H) for k=1, ..., m},

Cn0, T; H) = {ue (™0, T; H): support (u) c (0, T)},

N
0, 7; H) = {ue C0, T; H): 4t is T-periodic for k = 0,1, ..., m} .

¢ dex

per

All the derivatives above are assumed to be strong derivatives. In the case
H = R we will simplify the above notations to ¢"(0, 1), ¢3(0, T'), and C2 (0, T')
respectively. If w is infinitely differentiable we will set m = co. If w is m-times
continuously differentiable on some open interval containing [0, 7'] then we
say we ([0, T]; H) or we (™[0, T] in the case H = R.

Let V be another real separable Hilbert space with V ¢ H. We assume that
the inelusion map is a continuous injection from V into H and that V is dense
in H. Let ¢,> 0 be the constant such that |u],<e]u], for w e V. For con-
venience we will denote the norms and inner products of V, H by | -|, || and
((+,)), (+,") respectively.

Let V* denote the dual of V and identify H with its dual H*. Thus
V c H c V¥ We consider a family, 4(f), 0 <t < T, of continuous linear mappings
from V to its dual V*. Thus for each t we have A(f) € L(V, V¥), where L(V, V*)
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denotes the space of bounded linear mappings from V inte V*. If w,veV
A ueV* 0<t<T, and (A(t)u,v) € R, 0<i<T, where the bracket denotes
the dual action of V* on V. If A(f)u e H this bracket coincides with the
inner product on H. We associate a family of bilinear forms on VXV to A(t)
by setting a(t; u, v) = (A(t)u, v). We make the following assumptions:

(1.1)  a{t; w,v) = a(t; v, ) Yu,ve ¥V,
(1.2) de,> 0 such that |a(t; u, v)| <eu|v] Yu,ve ¥V,

(1.3) a(t; u(t), v) is measurable whenever «(t) is measurable and is continuous
on (0, T) whenever u(f) is continuous on (0, I').

Let L2(0,T; V) and L0, T'; H) denote the spaces of (equivalence classes
of) measurable functions from (0, 7) into V and H respectively which are norm-
square integrable. We point out that L2(0, T; V) and L*(0, T'; H) are Hilbert
spaces (cfr. Dunford-Schwartz[4]). We define another Hilbert space (cfr.
Lions-Magenes [7]) by

(14 W(0, T) = {u e L0, T3 V): v = S € Ix(0, 7 H)}
The derivative in (1.4) is assumed to be a weak derivative in the sense that
(efr. Schwartz [10]).

(1.5) fu'(t)cp(t) At = — fu(t)(p’(t) dt Vo e C2(0, T).

0

Since V ¢ H we observe that the integrals above have values in H. Equipped
with the norm [ul, = (|%|20zn+ 1% |30rm) " W(0,T) is a Hilbert space.

2 - Basic lemmas

We state some needed results coneerning the spaces introduced in the
previous section.

Lemma 2.1. C7(0,T; H) is dense in L0, T'; H).

We briefly outline the proof (cfr. Smiley [11],) which is well-known in the

34
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real-valued case. Define a smoothing kernel ke €7 (— oo, c0) by

/ Kexp[(it—1)1] —1<i<l

k() =
2 AN 0 otherwise

(E = ( Jexp [(12—1)] dt)7).
If wel?0,T; H) and »n is an integer we set

(2.1) Uy, (1) =?ﬂ(t — s/n)k(s)ds,

—

where % denotes the zero extension of u. One then shows |unllzgrm
< |l e,z for m=1,2,38,.... Next for § > 0 set u,(t) = u(t) on (6, ' — )
and us(?)= 0 otherwise. Then (u,), € U (0, T'; H) for # large and by the triangle
inequality (#4),—>u as 6 — 0%, n — co.

Def. A funetion wu:[0,7T]— H is absolutely continuous if, given
&> 0, there is a 6 >0 such that for any finite set of disjoint intervals
(a1, B1), wvey (@n, b)) contained in [0, ] with > |b, — a,|< d, we have > |u(bi)

i=1 =]

— u(a/i) l < &.

Lemma 2.2. Ifwue W(0,T)then u: {0, T] — H is in the equivalence class
of a wunique absoluiely continuous function. Moreover w'(f) = lim [u(t - At)
—u(t)]]dt (a.e.) te (0, T) and for almost all a, f € (0, T) di=0

B
(2.2) \ (o) — w(f) = fu'(s)ds.

Note that (2.2) is an equality between elements of H.
Here again the proof parallels the case - for real-valued functions (cfr.

i
Smiley [11],). We set (¢) = [u'(s)ds. From the theory of functional analysis
0

(efr. Yosida [12], p. 134]) we know that 4/(¢) = u/(s) (a.e.) te (0, T). Clearly
is absolutely continuous; for 0 < « << f < T we define a sequence of real-valued
functions {@,} where @,(¢) = 0-if t&[0,x —1/a] VU [ + 1/n, T], and g,(t) =1
ift e, f]. Elsewhere we define @, 50 that it is linear and continuous on [0, 1.
From (1.5) it follows that (for n large)

—Ju(®)g, (1) dt = [/ () @a(t) dt .
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Passing to the limit as n — co we obtain (2.2) except possibly for «, fe Z, a
set of measure zeroc. We now observe that @(f) —w(f), for fe{0, T1— Z, is
independent of f and conclude that « is equal (a.e.) to an absolutely con-
tinuous function.

Lemma 2.3. W(0,T)c C([0, T]; H) continuously, where
Hunc([o,r];s) = mnax {lu’(t) K O<t<T}'

This follows at once from Lemma 2.2 and the existence of € [0, T] such that
ju(to)| is less than or equal to the mean value of |u(f)].

Lemma 2.4. Let 6 be any real number, 0 <6< T/2. If we W(0,T)
then u,, defined by (2.1), converges to w in W(S, T — §).

This is a technical result used in Theorem 2.5.

We already know that u,— uin L*0,T; V) and hence in L2(§, T'— &; V).
It pe (6, T—6) and n»> 6! then one can show (u,) = (u'),, where the
primes denote weak derivatives with respect to . From this and the proof
of Lemma 2.1 the result follows. Note that for » large u, € C°(0, T; V).

Theorem 2.5. The set C°(0, T; V) W(0, T) is dense in W(0, T).

Proof. We set d,= T/4n and define a sequence of open intervals by
L= (0p, T'—6,), n==1,2,3,... Using these sets we define an open cover
for (0, T) by setting ¢, =I,, O,=1,, and O0,= I,— I,—, for n>3. We know
(efr. Adams [1]) that there exists a ¢ -partition of unity subordinate to the
cover {0y, 0,,0,,...}. Let {@i, ps, ®s,...} denote such a partition of unity.
Since ¢, € €5 (0,) it follows that ¢,u e W(0, T) for each we W(0,T). More-
over, we have just seen that

(@at)m(t) = J@nu)(t—s/m)k(s)ds,

converges t0 @,u in W(dn41, T — Ons1). Notice that if m > 4n(n + 1)/T then
support [(@at)m] C Loy — L,—s for n>4.

Let ¢ > 0. Since (p,u), converges to g,u in W(dut1, T — 0,1,) We may
select a sequence of numbers m, > 4n(n - 1)/, n =1, 2, ..., such that

n(‘Pnu)mn — (pau) ”W(o,r) = ”(q%u)m,, — (pau) ”W(aﬂﬂ, Tebpiy) <~ ef2n .

We now set 9, = (@,%)m, (n=1,2,3,...) and define =3 y,. Clearly

n=1
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pe 0°(0,T; V) since each v,e (0, T; V) and supp (w,) CLpsy — I,—. We
let m be any positive integer and observe that

m2 m-2 1‘n+2 )
[u— 1/)“W(d,,, 8y — ”Z Pt — Z Yn ”W(dm, =8 ‘<Z pnt — a “n'(o,a') <e.
n==1 n=1 n=1

By using this fact in conjuntion with the dominated convergence theorem we
conclude first that p e W(0, T') and second that [u— |y, <<e This con-
cludes the proof.

3 = Boundary condition subspaces of W(0, 7).

We congider the following homogeneous scalar version of boundary value
problem (0.1), (0.2). Let ¢ e C*0, 1), ae C°0, T), and consider

(3.1) @'+ a(t)p = 0 0<t<T,

B, = a;;0(0) + 41,9 (0) + b1 (L) + b1 (T) = 0,
(3.2)

B,p = a,0(0) + a5.9"(0) + byyo(T) + b (T) = 0,
where (@, @y., b1y, b1.) and (a1, @4y, by, bys) are linearly independent in R
The coefficients a;;, b;(i,j = 1, 2) appearing in (3.2) are assumed to be the
same as in (0.2). We make no notational distinetion between the above linear
boundary operators and those appearing in (0.2).

The adjoint boundary value problem (in parametric form) to (3.1), (3.2)

is (efr. Cole [3])

(3.3) Ptap =0 o0<t<T,
‘ p(0), Qs Qg & (L), by —Dby &
(3.4) [97’<0)] - [___an _afgl] [ﬂ] ’ [(IJ’(T)] '“ [ b11 b21] [/3] 3

where o, § are arbitrary real numbers. At least theoretically, we can always
write the parametric boundary conditions above in the form (cfr. Cole [3], p. 141)

By g = ay,9(0) + a3,¢'(0) + b}, 0(T) + bj,¢'(T) = 0,
(3.5)

Biy = a,0(0) 4 aly@'(0) + b o(T) + by (T) = 0.

As a notational convenience we shall write B} ¢ = B, @ = 0 to denote boundary
conditions (3.4).
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We define subsets @, @, of C°[0, T'] as follows. We set
Dy= {peC[0,T]: Bip=B,p =0}, Pp={peC[0,T]: Bjp=DB,p=0}.
Note that C; (0, T) is a subset of both @, and D,.. Let Ady= a,,0,, — 1204,
and By = by;0,, —b1.b,:. We show that a necessary and sufficient condition
for problem (3.1)-(3.2) to be self-adjoint is that 4,= B,.

Lemma 3.1. @,= @, if and only if 4,= B,.

Proof. Let M be the (4X4) matrix having (@, @, D11, by.) for its first
TOW, (@1, @ypy Doy, byo) for its second row, and (0, 0, 0, 0) for its third and fourth
rows. Note that the null space of M is 2-dimensional. Let X ¢ R* denote the
2-dimensional space spanned by the vectors v, = (¢, — @1, — b1y, byy) and
Vg == (Qgp, — Gg1y — by, Dyy). IE P: C10, T'] — R* denotes the map Py = (p(0),
@'(0), o(1), 9'(T)) we have MPgp = o if and only if p€ D, and Ppe X if
and only if p e @,4.

Let v € X c R* 8o that @ = av, + fv,. Since

Mz = col (B(4y — By), a(Ay— By), 0, 0)
we see that X is the null space of M if and only if 4,= B,.
We next define subsets ¥y, ¥y of C°([0, T]; V) as follows. We set

Vo = {peC(0,T]; V): p= > @i, @i € Ppy v, € v},

finite

TB*:: {T/JEOQ([Oa T7; V): Y = Z(piviy(piE@B*y'U{e V} .

finite

Corollary 3.2. V¥, =Y. if and only if 4,= B,.
Finally we introduce our closed boundary condition subspaces of W(0, T).
We set
Ws(0, T) = closure {u € C°([0, T'1; V): Byu = B,u = 0},
W (0, T) = closure {u e ([0, T]; V): Biu = Byu = 0},

where the closure is taken with respect to the norm on W(0, 7). The notation
needs some explanation. First by B,u = B,u = 0 we are referring to bound-
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ary conditions (0.2). Second, by Bfu = BL_Tu = 0 we are referring to bound-
ary conditions in the form of (0.2) with the coefficients a;;, b;; (4,7 =1, 2)
replaced by the adjoint coefficients aj,,b;, (4,7 =1,2) appearing in (3.5).
As we now show, an alternate definition in terms of the sets ¥, and ¥, is
possible.

Lemma 3.2. Wy(0,T) and W,.(0, T) are the closures in W(0, T) of ¥y
and ¥oa respectively.

Proof. Let {wy,w,,w;, ...} be a complete orthonormal basis for V. For
we ([0, T]; V) we define P,u =Y gi(t)w;, where g.(t) = ((u(t), w.). Notice
=1
that

n

By(Pou) =3 (Byg)wi= S (B, ww,  (=1,2).

=1 {=1

Thus, if Byu = B,u = 0, then B;(P,u) == By(P,u) =0 for n =1,2,3, ....

Let we Wy(0,T). We may assume that we ([0, T]; V) and Bu
= Byu == 0. In this ease we see from the above remarks that P,ue ¥, for
n —1,2,3,.... We show that P,u — «in W(0, 7). From basic Hilbert space
theory we know that both [u(t) — P,u(t)] —0 and |u'(f) — (P.w)'(#)] =0
in V as n— oo, for each t€[0, T]. Since Ju(?)— (P.u)@)|*<4u(z)]? and
[w'(t) — (Pau) ()2 < 4]w'(2)]|2, we may apply the dominated convergence theo-
rem to conclude that P,u —u in W(0, T). The argument for W, (0, T) is
similar.

Corollary 3.3. W,(0, T) = W,u(0, T) if and only if A,= B,.

4 - The weak problem

We are now in a position to give a precise meaning to the concept of a weak
solution of problem (0.1), (0.2). In this section we will assume that the bound-
ary conditions (0.2) are homogeneous. In the next section we will consider
some nonhomogeneous problems. We will assume henceforth that the right-
hand member of equation (0.1) is a function of ¢ alone. If f depends on « the
definitions are the same.

Def. 4.1. Let fe L?0,T; H). We say that e W(0,7) is a weak
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solution of the boundary value problem

d2u
(4.1) azg——{—fl(t)u:f, 0<i< T,
(4.2) By = Bu =10,
if we W,0,T) and
T T
(4.3) [ [(wy ") 4 alt; u, pv)]dt = [ (f, pv)dt Vpe Py, veV.
0 (1]

Due to the linearity involved we may equivalently write (4.3) as
T r

(4.4) [Ty 9") + a(t; u, p)]dt = [(f, ) At Yy e ¥ .

] o

We will show that the weak problem formulated in Def. 4.1 is a proper
generalization of the classical problem (4.1), (4.2). But first we prove a
needed result.

Lemma 4.1. If ueCY[0, T1; V) and Byu = Byu =0, then w € W, (0, T).
Proof. Let §> 0 and define a function us€ C([0, T]; V) by
“u(0) - tu'(0) , 0<t<d,

671t — 0)[w(20) — u(0) — du'(0)] 4 w(0) -+ du'(0) J<i<20,

u(t) 20<t< T —20,

YT — 6 —D)[w(T — 28) — w(T) 4 o' (T)] -+ w(T) — ou'(T)
I—2i<t<T—9,

us(t)=

w(T) + (t— T)u'(T) T—d<t<T.

It is easy to show that ws— « uniformly on [0, 7] as d — 0F. Also we
find w, —u' uniformly on [0, T']— {9, 26, T — 26, T — 6} as 6 — 0*. Hence
us—>u in W(0, I) as é — 0F. We now set

Ua(t) = [Wo(t — s/n)k(s)ds ,

)

where @s denotes the linear extension of us to all of (— oo, co) and k(s)is the
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smoothing kernel of section 2. We already know that «,— us in W(0, T') and
thus %, —« in W(0,T) as » - oo (and J —> 0%). It remains to show that u,

satisfies the boundary conditions (for = large). To this end we observe that
sk(s) is an odd funection and hence

[ (sv1+ 0.)k(s)ds = v, Yo,,0,€ V.

-

Thus if » > 6-1 we have

4,(0) :}:ﬁo(—— s[n)k(s)ds :Ru(O) — (s[n) /(0)) k(s) ds == (09,

-0 -

. (0) ———Gfou:,(——- s/n)k(s)ds =ﬁu’(0)ic(s) ds = u/(0) .

~c0

Similarly u,(T) = w(T) and . (T) = w'(T). Thus Byu,= Biu =0 (i =1,2).
This completes the proof.

Theorem 4.2. ZLet we C¥0,T; V) with " € L*0, T; V) and let
fe €, T; Hy N L0, T; H) .
Then u satisfies (4.1), (4.2) in the strong sense if and only if w is a weak solution.

Proof. Under the assumption that »” € L0, T'; V) we integrate by parts
twice in (4.3) to obtain

r r

(4.5)  fl(u", pv)+ta(t; u, pu)]dt-+(u, ¢’ v) |— (u', pv) | = [(f, pv) At Vg € Bs, vET.
] 0 1 0

Let ¢ € @y« so that ¢(0), ¢'(0), (1), ¢'(T) are given by (3.4) for some «, f € R.
An easy computation shows that for any ve V

(1, @'v)|— (u', pv) | = (aByu + BB, u, v).
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Hence (4.5) can be written as

(4.6) LfT[(u”, ov) + a(t; u, gv)]dt 4 (aByw + fByu, v) = j?f, o) dt

0 0

Vo€ Dy vel.

Since €7 (0, T') ¢ Dy we see that (4.6) necessarily implies

r
(4.7) [ + A{tyu—1f,v)pdi = 0 Vpe 020, T), vel.

0

Note that A(t)ue V* for all 1[0, 7] and ve V.

Now if « is a classical solution of (4.1), (4.2) then it is clear from (4.6) that
must also satisfy (4.3). Morveover ue€ W0, T) by Lemma 4.1. Thus % is a
weak solution.

On the other hand, if u is a weak solution so that u satisfles (4.3), then it
also must satisfy (4.7). Thus it follows that (u"+ A{®)u —f, v) = 0 forall
velV and t€(0, 7). But then w'--A(t)u=7 in V* for all te (0, 7). This is
the strong meaning of (4.1). Having established this we find that (4.6) reduces
to (aByu + BByu,v) = 0 for all v e V and arbitrary «,feR. But V is dense
in H and thus we conclude B,y = B,u = 0.

Remarks. (1) The proof of the above result requires only that u sabisty
w,w', u’ € L20, T; V) and fe L0, I; H). The former condition implies (by
the same argument used in Lemma 2.2) that we C*([0, T']; V ). Under these
weaker assumptions on % and f we need only amend the statements above to
hold almost everywhere.

(2) Taking V = H = R», for »>>1, we see that the above results also
apply to systems of 2nd order ordinary differential equations having the form

(4.1), (4.2).
Let us now define a continuous symmetric bilinear form on W(0, 1) by

T
Blu, w) = f[— (v, w') + a(t; u, w)]dt, w,we W0, T).
0

Observe that after integrating by parts once we may write (4.4) in the equiva-
lent form

(47'8) B(“} 7/)) “*‘ (’tb, 1/),) l: (f? 1)())1}(0,1’;}7) V'IP € Yjﬂ* .

0
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T
Corollary 4.3. If (u,y')|= 0 for every we Wx(0, T) and every PE ¥y,
0
then w is a weak solution of problem (4.1), (4.2) if and only if u e W (0, T) and

(4.9) B(u, w) = (f, )0, pm Ywe W0, T) .
Proof. Clearly, under the assumption above, (4.8) is equivalent to
(4.10) By p) = (f, ¥)p20,2:m) Ypel,.

Notice that, for fixed « and f, both sides of this equation are continuous linear
functionals of y € W(0, 7). According to Lemma 3.2, y, is densein W,.(0, 7).
Hence » will satisfy (4.9) if and only if it satisfies (4.10).

Corollary 4.4. If the boundary conditions (4.2) are either Dirichlet,
Neumann, or periodic then u is a weak solution of problem (4.1), (4.2) if and only
if we Wy(0, T) and

(4.11) B(uy w) = (f, W) 120 2.0 Ywe W (0, T).

T
Proof. In these cases we have W,.(0, T) = W,(0,T) and (w, ) |=0
for all e W,(0, T) and every pe¥,.=¥,. 0
To conclude this section we consider a special case of the boundary condi-
tions (4.2). Let B,u = %'(0), B,u = u'(T) so that (4£.2) becomes homogeneous
Neumann conditions. We show that in this case the boundary condition sub-
space W,(0, T) is actually the whole space W(0, T).

Theorem 4.5. The set N = {ue ([0, T]; V): w'(0) = w'(T) = 0} s
dense in W(0, T).

Proof. According to Theorem 2.5 it suffices to show that for each
we (0, T; V) N W(0, T') there is a sequence of functions in N converging
to » in W(0, T).

Let we C°(0, T; V) N W(0, T). We first observe that for any ¢ > 0 there
is & 6 > 0 such that

[lurdi<e, [lu@edi<e  Vse(o,s).

T—s

Hence for any ¢ > 0 there is a 6 > 0 such that for all s (0, ) we have

jtnu %Tf (T — ) fu()|2di < e .



[13] A WEAK FORMULATION ... 531

Thus there are sequences of numbers {,.}, {ti.} (2 =1,2,3,..) such that
ton —> 07y 41, — T, and o, fu(ten) |2 < 11, (T —tia) [[ultia) ] < 1/n.

We use these numbers to define a sequence of functions {u,} in W(0, ). Let
Uy (1) = u(t) for to, <t<ty, and w,(f) = w(l,) or u,(f) = u(ty,) if t<t, Or 130,
respectively. We have u;(t) == u'(t) for t,, <t<f, and u;(t) = 0 otherwise
(in the weak sense). Moreover we observe that

[ — )|t = _fTIu(t) — u, ()] 2di +flu’(t) — o (t)]2dt

0

ton T

= [(Jlu(t) — w(ton) 2+ [/ (8)]]%) At + [(lu(® —w(tn) [+ |/ (0)] ) dt

top

<2 (fon flton) | + (T —tun) Jultin) [2) + (2 Ju®)]2+ [w'(D)}%) At

+ @lui+ w01 a.

Hence u, —> % in W(0, 7). We may now proceed as in Lemma 4.1 to show that
the regularizations of wu,,

(nn(t) = fun(i—sjm)k(s)ds  (m> ),

—C0

form a sequence of elements in N converging to u,. We may then extract a
sequence by a diagonal process which converges to « in W(0, Z'). This proves
the theorem.

5 « Nonhomogeneous problems

In this section we consider three important nonhomogeneous problems.
To be precise we assume that B,, B, denote the evaluation operators correspond-
ing to either the Cauchy problem (B,u = (0), B,u = #'(0)), the Dirichlet
problem (Byu = %(0), B,u = #(T)), or the Neumann problem (B,u = u'(0),
B,u = u'(T)). Let v,, v, denote elements of V and let h,, b, denote elements
of H. We consider the nonhomogeneous problems

(5.1) W Au=1 O0<t<T,
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(5.2), u(0) =2, w(0) =k (Cauchy problem),
(5.2), w0) =1v,, w(l) =, (Dirichlet problem),
(6.2), w(0) = hy, wW(T)=h {(Neumann problem).

Note that all equations in (5.2), s, . are taken to have meaning as equations
in H. However, if u(0), (7)€ V then u(0) = v,, w(T) = v, in V since the
inclusion map is injective. It is our goal to define weak nonhomogeneous pro-
blems in these three cases. We do this for all three at once.

As before we use W,(0, T') to denote the homogeneous boundary condition
subspace of W(0, ). Let u, e {C([0, T1; V): »' e C([0, T]; H} be any function
satisfying the nonhomogeneous boundary conditions (5.2). That is we assume 1,
satisfies (5.2), , or (5.2), depending on whether the problem is Cauchy,
Dirichlet, or Neumann respectively. We define u e W0, T) to be a weak
solution of problem (5.1), (5.2) if weu, -+ W0, T') and

4 o

(5.3) Tl ¢"0) 4 alt; w, pv)] At — (uy, @' 0) |+ (uy, pv)| = [(f, pv) dt
0 [}
Vpe Dy, veV.

Observe that in two of the cases under consideration, the Dirichlet and Neu-
mann problems, we have @g== @,, while in the third case @, D, As wo
now show, the above definition is independent of the ehoice of Ug.

Let @€ @y 50 that ¢(0),9'(0), o(T), ¢'(T) are given by (3.4) for some
a, e R. Then we see as before that

(6.4) — (tz, ¢'0) |+ (g, ) | = — (@Byrtts + BB, 2z, ) .

Thus only the prescribed boundary values actual appear in (5.3). Also if U
ig another function satisfying all the required conditions then we should have
Up — Uze € W (0, T) and hence

up+ Wy(0, T) = ti5e 4 (Up— tps) + Wi(0, T) = wpu - Wi(0, T).
That this is actually the case is shown in the following lemma.
Lemma 5.1. If uwe{C([0,T]; V); w' € O([0, T]; H} satisfies the homo-

geneous Cauchy, Dirichlet or Newmann boundary conditions, then u e Ws(0, 17,
where Wy(0, T') is the corresponding boundary condition subspace.
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Proof. The ecase in which the boundary conditions are Neumann is an
immediate consequence of Theorem 4.5.

Let us consider the Cauchy problem. We must show that for each
uef{ue (0, T]; V): w € C([0, T]; H) and w(0) = «'(0) = 0} there is a se-
quence of functions u,e {ue C>([0, T1; V): w(0)=u'(0)==0} which converges
to u in W(0, I'). To this end we define for d > 0

0 —oco<t<o,
01t — ) u(24) d<t<26,

uo(t) =
u(?) 20<t<T—6,
u(T —9) T—d<t< + o0,

It is easy to see that ws—u in W(0,7T) as § — 0+, If we define

(5.5) {(#s)n(t) == fue(t — sfn)k(s)ds,

where k(s) is the smoothing kermel, then (for » sufficiently large) we have
(uo)s € C°([0, T]; V). Moreover, as in the proof of Lemma 4.1, we find that
for n> 0= we have (us)s(0)= us(0) =0 and (uo);(O) = ué(O) = 0. Since
(6)n —> us this establishes the result.

‘We use a similar argument for the Dirichlet problem. Let 6 > 0 and define
A(t) = T(t— 6)/(T —26). Observe that A(f) is the real-valued linear fune-
tion through the points (4,0) and (I'— 46, T). For we {uel([0,T]: V):
w € 0([0, T]; H) and u(0) = w(T) =0} we define us(t) = u(4(t)) for d<t
<T — 06 and us(t) = O otherwise. It is again easy to verify that ws-— win
W(0, ) as 6 — 0*. Using (5.5) to define (us), we obtain a sequence of functions
in ([0, T]; V) which also satisfy (#0).(0) = ws(0) = 0, (e)n(T) = us(T) = 0.
This completes the proof of the lemma.

We now show that our weak problem is a proper generalization of the clas-
sical problem.

Theorem 5.2. Lot we CX0,T; V) with "€ L*0,T; V) and let
feCo, T, Hyn L0, T; H) .

Then w is @ classical solution of problem (5.1), (5.2) if and only if w is a weak
solution.
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Proof. For u as above we integrate by parts twice and use (5.4) to show
that « satisfies (5.3) if and only if « satisfies

(5.5) (0", ) + at; uy )] At -+ (@By + fBytt, v) — (oByttn + fBait, o)
ij,rpv Vpe D, veV.

Note that « and f depend on the choice of ¢ € @4 as dictated by (3.4). Taking
p e C7(0, T) shows that v’ + A(f)u—7f in V* for all t€ (0, 7). Hence (5.5)
implies that for arbitrary «, f € R we have

a(By(u — up), v) + B(Bu(u — uz), v) = 0 YoeV.

Since V is dense in H it follows that By(u — up) = B,(u — up) = 0 as elements
of H. From this we deduce immediately that » satisfies (5.2). Thus if » is a
weak solution, it must also be a classical solution of (5.1), (5.2).

In showing the converse it is clear that « satisfies (5.5) and hence also (5.3).
Since Bi(n — uy) == By(% — uz) = 0 we may apply Lemma 5.1 to conclude that
U~ 1up €& W0, T'). Therefore » is a weak solution.

6 - Examples

I) We consider the following problem

(6.1) Uy — Uy = (L, @, u) —o<t< oo, I<e<m,
(6.2) u(t, 0) = u(t, wr) = 0 —oo<<t< 4 oo,
(6.3) u(t 4+ 27, @) = u(t, v) —oo<t< 4+ oo, O<e<m.

A weak formulation for this problem has been used by many authors ([2], [5],
[8],[9]). We briefly describe this formulation and then compare it to the
formulation given in this paper.

Let D be the set given by

= {p € 0°((— oo, + 00) X (0, 7)) : @ satisfies (6.2), (6.3)} .

Let ¢ = (0,27) X (0, z). We denote by # the Hilbert space obtained as the
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closure of D in the norm

e = ([ -+ [0l 2 T+ 102 2xe)

A function w €27 is a weak solution of (6.1), (6.2) if

(6.4) Hu Pr— Qo) At A —J'jf w)pdide VpeD.

In comparison we take V = H}{Q), H = L*Q) and consider the problem

d2y . i
dtz +[ //fU']’U/:f(’lL) O<t<27f:1,

Biu =u(0)—u(2n) =0, Byu=u0)—u{2n)=0.

Observe that the boundary condition ceefficients a,;, by;, (¢, j = 1, 2) appearing
in (0.2), for the above problem, take the values (&,q, ¢, b1y, b1s) = (1, 0, — 1, 0)
and (@, @as, by, bap) = (0,1, 0, —1). Hence Ay= @310y — Q1285 == 1 == by by,
— bipbyy = By. Acecording to Lemma 3.1 we thus have

Dy = Dy = {QJ € 07[0, 2x]: @(0) = ¢(27), ¢'(0) = (P,(?'”)} .
Notice that [ju|, = |u|pe. Since €7(0,x) is dense in V = Hi(0,x) it

is clear that Dc ¥, and & = W__ (0, 2x). Moreover (6.4) is equivalent to
(4.3) which is easily seen after writing (4.3) in the equivalent form (4.4).

IT) We consider the Cauchy problem of Lions-Magenes [7]

(6.5) df SR Apu=f o0<i< T,
(6.6) w0) =u, eV,
(6.7) w'(0) =u,cH.

The equations «(0) = u,, u'(0) = u, have meaning in H and V* respectively
for » satisfying (6.5). This can be shown by applying Lemma 2.2 twice, once
to W(0,T) and once to the space {ue L0, T; H): du/dte L0, T; V*)}.
Notice that if #(0) € V then u(0) = u, in V since the inclusion map is injective.
In this case the boundary condition coefficients a,;, by (4, § = 1, 2) take the
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values (@, @y, by, 012) = (1, 0, 0, 0) and (s, ¢, bay bss) = (0, 1, 0, 0). Clearly
A, B,. Using the above values in (3.4) we find that @, = {p € C°[0,T]:
o(T) = ¢'(T) = 0}. Since Byu = 4(0), B,u = %'(0) we clearly have @,={p
€ 0°[0, T1: ¢(0) = ¢'(0) = 0}, and W,(0, T) = closure {u e C°([0, T7; V): u(0)
= u'(0) = 0}.

In addition to the previous assumptions on a(t; u,v) we now further as-
sume that the map t — a(t; w, v) is in €10, T, for all , v € V, and that there
are constants A, « € R with « > 0 such that

a(t; wyu) + Alul2>oajul? Yue V.
Let #, be the unique solution of the problem
w4+ Ay =0, w(0) =1u,, w'(0)=1u,.

From the results of Lions-Magenes[7] we know that e C([0, 7']; V) and
r

T
w’ € 0([0, T]; H). Notice that for any ¢ € @y« we have — (u,, ¢'v) |+ (1, pv)]
1]

0

= (tto, ¢’ (0)v) — (uq, @(0)v). Thus v is a weak solution if u €, Wx(0, T)

and satisfies (5.3) which now takes the form

r T

T [y @"0) + a(t; u, @o)]AL 4 (1o, ¢'(0)0) — (uz, @(0)w) = [(f, pv) At

[ ¢

Vpe Dy, vel .

Using the bilinear form B(-,-) of 4 we obtain equivalently (after integration
by parts)
T

(6.8) Blu, pv)+- (1s—1(0), ¢'(0)0) — (s, p(0)0) = [(f, gv) At Vpe Dy, veT.

0

Now if ueu,-+ W0, T) then there is a sequence wu,e C*([0, T']; V) such
that «,(0) = u;(O) = 0 and %, —u—u, in W(0,T). Thus it follows from
Lemma 2.3 that 0 = %(0) — u,(0) = %(0) — u, in H. Therefore (6.8) reduces to

B(a, pv) — (uly (P(O)”) = (f, ‘P'D)L‘(o,iﬂ;u) V(P € (DB* , vev.

This is precisely the weak formulation of the Cauchy problem given by Lions-
Magenes [7], p. 265. :
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