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KRzyszror P. RYBAKOWSKI (%)

Some remarks on periodic solutions

of Carathéodory RFDES via Wazewski principle (**)

1 — Bound sets for RFDEs with continuous right-hand side were intro-
duced by Mawhin (cfr. e.g. [3]) to prove existence theorems for periodic solu-
tions of RFDES. The similar concept of a regular polyfacial set was also
independently considered in [5]:2,5 With the purpose of generalizing Wazewski’s
principle to RFDEs. This raises the question of how WaZewski’s principle is
related to Mawhin’s topological degree method. More specifically, we ask if
Wazewski’s principle can be used to detect periodic solutions of RFDEs. We
show in these remarks that the answer is yes, in dimensions one and two, and
no in any higher dimension. In the scalar case, this is trivial, for n = 2 it is
a consequence of Hopf’s extension theorem, and for n>3 we answer the
question by giving an example of an ordinary differential equation & = f(z),
and a bound set U for this equation, with Cl U being homeomorphic to the
closed unit ball in R», f(z) s 0 for # € Cl U, and such that the retract pro-
perties of Wazewski’s principle are satisfied with respect to U and f.

In these remarks we also generalize, in the spirit of [4] and [5],, the con-
cept of a bound set and that of a guiding function to retarded functional dif-
ferential equations of Carathéodory type, so that the resulting method can
be applied to such equations.

2 — Let us first explain some notation: if X is a topological space and
A is a subset of X, then Cl 4 and 24 denote the closure and the boundary

(*) Indirizzo: Lefschetz Center for Dynamical Systems, Division of Applied Math-
ematics, Brown University, Providence, Rhode Island 02912, U.S.A..

(**) This research was supported by the Deutsche Forschungsgemeinschaft; the
Author is visiting assistant Professor (Rescarch) at Brown University. — Ricevuto:
8-1-1981.

(&)
D



378 K. P. RYBAKOWSKI [23

of A, respectively. €= C([—r, 0], R"), r>0, is the space of all continuous
maps ¢:[—r, 0] - R® endowed with the sup-norm topology. If ¢e R, and
@: [—r+t,t] -+ R is a continuous map, then 2z, is the element of ¢ defined
as x,(0) =a(t +0), 0[—r, 0].

Let £2 be open in RXC, and let f: ©@— R». f will be said to satisfy the
weak Carathéodory condition, if properties (i) and (ii) below hold:

(i) f(-, ) is measurable for every fixed ¢, f(f, -) is continuous for a.e.
fixed ?;

(ii) for every (t, p)e 2 there is a neighborhood V = V(i, ¢) of (i, ¢)
and an integrable function u: R — R* U {oo} such that [f(s, )| <pu(s) for
(s, pyevV.

Suppose now that f: Q — R" satisfies (i) and the following property
(ii)" for every bounded set F c £ there is an integrable function u: R
— RT U {oo} such that [j(s, v)| <u(s) for (s, ¢) € E.

In this case, f will be said to satisfy the strong Carathéodory condition.

Remarks. If =0 and Q= C, then C =~ R* and (ii) is equivalent to
(ii)’, but for » > 0, (ii)’ is stronger than (ii). If f is continuous, then f satisfies
the weak Carathéodory condition. If fis completely continuous (i.e. continuous
and maps bounded sets into bounded sets), then f satisfies the strong Cara-
théodory condition.

3 — We shall define striet bound sets and strict guiding functions for
rEDEs of Carathéodory type. For details concerning RFDES, we refer to [1].

Let f: RXC — R* be a T-periodic mapping (i.e. f(t + T, ¢) = f(t, ) for
all (¢, @), T > 0, satisfying the strong Carathéodory condition.

Consider the boundary value problem (1)
1) T = f(t, x,), @ is T-periodic .

Let X = {w|s: R - R*, x is T-periodic}.

Def. 1. An open bounded set Gc R* is called a strict bound sel
for (1), if there is a class & of C:-functions V: R* — R such that for every
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we o there is a V=V, e F sa,tisfying (i)-(iii) below:

(i) Gc{veR|V(v)<0};
(i) V(u) = 0;
(iii)  for every te R and every z € X for which a[R]c Cl & and a(t)=u,
there is an >0 and a null-set ¥ c R such that either

{grad V(z(s)), f(s. #,)> >0 for seft—e, t + e\,
or
<grad V(z(s)), f(s, 2,)> << 0 for se[t—e, t + e\N .

Remark. (,> is the scalar produect in R, grad V(z) is the gradient
of ¥V at a.

Def. 2. A (function W:R» >R is called a sirict guiding func-
tion for (1), if there is a ¢ > 0, such that for every ¢ R and every z e X for
which [l@(t)] >0 and |W(z(@2)) |>| W (z(s )(, s € R, there is an ¢ > 0 and a null
set N c R such that {grad W(z(s)), f(s, 2,)> < 0, for se[t —e, ¢t + e\ .

Remark. Definitions 1 and 2 generalize the corresponding concepts from
definitions VII.1, VIL5 in[3] and definition 8.2 in [5],.

The following proposition, whose proof is analogous to that of proposi-
tion VII.6 in [3] relates guiding functions to bound sets.

‘Proposition 1. Let W be a strict guiding function for (1), such that
| W(v)| = oo, as [[v] = co. Then there exists a strict bound set & for (1)
such that G > {v e R*||v]| <g}. ‘

The main applications of the concepts introduced above are Theorem 1
and Corollary 1

Theorem 1. Let G be a strict bound set for (1). Assume that dfg, G, 0] 0,
where
gla) = (1/T) Ht a)dt, acR".

Then there 18 a T-periodie solution z of & = ft @) such that x(t)e G for
te R

Remark. d[g, @, 0] is the Brouwer-degree of g on @ with respect to 0.
Theorem 1 is a consequence of the following lemma, which follows imme-
diately from theorem IV.13 in [3]. '
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Lemma 1. Let f be as in the BVP (1), and I" be an open bounded subset
of X. Assume (1)-(3) below:

(1) for every 2, 0 << L <C 1, there are no solutions in ¢l of (2a)
(2) &= (L, ;) ;

(2) for all constant functions we ol (x(t) = a, te R),

T
Jft, @) dts=0
[]
(3) if U={aecRr|wel for x(t) = a}, then d[g, U, 0]5=0, g being de-
fined as in Theorem 1.
Under the above assumptions there exists a T-periodic solulion of & = f(i, x,)
such that vel. '

Remark. Since I'" is open and hounded, the same is true for U. Since,
by (2), gla)5% 0, for ae U, d{g, U, 0] exists.

Proof of Theorem 1. Let I'={welX|a(t)e@, teR}. Then I is
open and bounded in X. Let us verify assumptions (1)-(3) Lemma 1.

(1) Suppose that for some 0 << A< 1, # €0l is a solution of (2). Then
2[R]c 016, and o(t) = uecG for some teR. Let V=7V,e% be a function
satisfying (i)-(iii) of Def. 1. Assume first that <{grad V(z(s)), f(s, 2z,)> >0

for a.e. se[t,t -+ ¢]. Hence for a.e. se[t,t-+¢], (d/ds)V(x(s))>0, i.e.
: tte

V(o(t 4 €)) = V{e@t)) + [ (d/ds)) V(a(s)) ds > 0, which contradicts the fact
0
that a(t + ¢) € C1G. The other case is dealt with similarly.

(2) If 2(t) =a, te R, and wc ol then e € ¢G. Choose V =V, satis-
fying (i)-(iii) of Def. 1. Let A" (resp. 47) be the set of all te R for
which there is an ¢ > 0 such that (grad V(a), f(s, a)> > 0, (resp. <{grad V(a),
N(s, @) < 0), for a.e. se€(t—e ¢~ ¢). Both AT and A~ are open, AT
JA™ =0, and, by Def. 1, 4¥U A~ =R. Hence A"=R or A~ = R,

T

This implies (grad V(a), [ f(s, @) ds > 0, which proves (2).

[

(3) If U is defined as in Lemma 1, then U = & and (3) follows from the
assumptions of Theorem 1.

This proves Theorem 1.
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Corollary 1. If W 4s a strict guiding function for (1) such {that
[W()| = oo as |v] -+ oo, and if dfgrad W, B,(0), 0]+ 0, then the BVP (1)
has a solution.

Remark. B,(0)= {veR"||v| < g}.

Proof. By Proposition 1, there is a strict bound set for (1) such that
G 5 Cl By(0). Hence it only needs to be proved that d[g, G, 0]« 0, where g
is as in Theorem 1. It follows from Def. 2 that <{grad W(a), gla)> < 0
for a ¢ B,(0), therefore g(a)==0 for ae B,(0) and d[g, B.(0), 0] = d[grad W,
B,(0), 0] %= 0. Hence d[g, G, 0] = d[g, Be(0), 0] # 0, which proves Corollary 1.

Example 1 (cfr. eq. 2.6 in [6])
(3) B(t) = —ou(t) + [o(t—7)|* exp (— |@(t—7)|) + e(?) ,

where #(t)e R, s > 0, 050, and e(t) is a T-periodic, measurable and essen-
tially bounded funection. Then for b > 0 large enough, @ = (— b, b) is easily
seen to be a strict bounded set for 7-periodic solutions of (3) and hence, by
Theorem 1, there is a T-periodic function x(f) € @ solving (3).

Alternatively W(y) = 2 (for 0<< 0), or W(y) = — »2 (for ¢ > 0) is a strict
guiding function for (3), which satisfies the assumptions of Corollary 1.

Example 2. If ye R let y* = (v, ..., ¥9)". Let 0<r,<r, 1=1,2,3.
Consider

(4) #(1) ‘
= Awx(t) + Ba(t —ry) + Pa*(t) + Qu2(t —r,) -+ Cw3(t) -+ Dad(t —r,) + E(1),

where 4, B, P, @, C, D are nXn-matrices, ¢ = diag (e, ..., ¢,), D= diag (d;,
ey @)y ei| > ||, i=1,..,n. E: R R is T-periodiec, measurable and
essentially bounded.

It is a matter of trivial ecomputation to verify that for M >0 large
enough, the cube G = (— M, M)" is a strict bound set for (4), and the
hypotheses of Theorem 1 are satisfied. Hence there is a T-periodic solution
of (4).

In Examples 1 and 2 and in many other examples of the application of
the topological degree method to RFDES, one can also use Wazewski’s prin-
ciple ([5],.5) to prove existence of solutions of & = f(¢, #,) such that @(t) € G
for all #>0. To this end, we do not need the 7-periodicity of f, and the strong
Carathéodory condition ean be replaced by the weak one. However, using
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Wazawski’s principle in. this way, one does not obtain any information about
possible T-periodic solutions in G. As it was pointed out at the beginning
of this paper, one may ask if Wazewski’s principle alone can be used to
locate T-periodic solutions of RFDES.

Let us fivst consider a trivial example.
(5) =1, F=r@rt—1),

() is an opE in R? (in polar coordinates).

Let G be the open annulus contained between the two concentric circles
at zero with radii § and §, respectively. Being autonomous, (5) can be viewed
as a Z-periodic equation for every T > 0. Also, G is a regular polyfacial set
with respect to (5), satisfying all hypotheses of the classical theorem of
Wazewski ([7]). Hence, if Wazewski’s principle alone were sufficient for deter-
mining the existence of T-periodic solutions of opms, then it would follow
that, for every 7' > 0, there is a ZT-periodic solution of (5) in G. But every
periodic solution of (5) in G is 2n-periodie, a contradiction. Hence Wazewski’s
principle « fails » even in this trivial example. The situation is different, if G
is simply connected. B.g. if G={x e R*||»| < §}, then @ contains 0, hence
there is a T-periodic solution of (5) in G.

The situation just deseribed holds generally for RFDEs in dimensions one
and two.

Theorem 2 (cfr. theorem 8.3 in [5],). Suppose n =1 or n=2. Let
f: RxC —R" be a T-periodic mapping satisfying the strong Carathéodory con-
dition. Consider the BVP (1) together with the ordinary differential equation (6)

(6) z = g(»),

where gla) = (l/T)j?f(t, a)dt, a € R,

Let G be a strict bound set for the BVP (1) and let F be the associated class
of functions from Def. 1. Then G satisfies the classical assumption of
Wazewski’s theorem ([7]) that every egrees point of G and g is also a strict egress
point for G and g. Assume (1)-(3):

(1) eq. (B) satisfies the uniqueness property of solutions or else F is finite;
(2) the retract properties of Wazewski's principle ([7]) are satisfied for G
and eq. (6); ,
(3) there is a homeomorphism h: Cl G — Cl By(0) such that h [G] = B,(0).
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Under. the above hypotheses there exists a T-periodic solution z, of
& = f(t, x,) such that z(t) e @ for te R,

Proof. That every egress point of G and g is a strict egress point of G
and g follows from proof of Theorem 1.

n =1, By assumption (3), G = (a, b), a, b e R, and by assumption (2),
either both points ¢ and b are strict egress points for eq. (6) or they are both
strict ingress points for this equation, i.e., either g{a) > 0 and g(h)< 0 or
g(a) < 0 and g(b) > 0. Hence, d[g, G, 0] = 0, and the application of Theorem 1
proves the result for n = 1.

7 = 2. Suppose that d[g, &, 0] = 0. Then, by Hopf’s theorem, ¢|oG is
null-homotopic. Hence g|cG can be extended to a continuous mapping §:
Cl ¢ — R? such that g(w)==0 for all e ClG. Using assumption (1) it is
easily proved that there exists a C'-function F: R* — R?, F(x)s4 0 for 2 Cl G,
and such that all assumptions of the classical principle of Wazewski ([7])
hold for & and the equation & = F(x). Hence, by Wazewski’s principle, there
exists a solution z(¢) of © = IF(x), such that 2(f)e G for all £>0. By the
Poincaré Bendixson theorem there follows the existence of a nonconstant
periodic solution #(¢) of & = F(x) such that z(t) e @ for te R. Since Cl@ is
homeomorphic to the closed unit ball, it follows that there is an equilibrium
point of & = F{x) in G, which yields a contradiction. Hence d[g, G, 0] 0
and Theorem 1 completes the proof for n = 2.

We shall now show by means of an example that Theorem 2 is not true
for n>3.

Proposition 2. For every n>>3, there is a C®-mapping ¢: R*» - R»
and a finite family of polynomial functions V: R* — R» such that the fol-
lowing properties hold:

(1) @ = {we R*"|V(x)< 0, for every Ve #} is a strict bound set for
the BVP (1), where f(t, ) 2ot g(p(0));

(2) all assumptions of Wazewski’s principle ([7]) are satisfied for G and
T = g(x);
(8) g@)# 0 for ze C1G;
(4) there is a homeomorphism. h: C1 G — C1 B,(0) such that B[G] = B(0).

8

Remark. Proposition 2 obviously implies that Theorem 2 is not true
for n>3, because otherwise we would obtain a sequence of T',-periodic solu-
tions @, of & = g(x), T, — 0, ®,(f) € G, but this would contradiet property (3).
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Proof. Let = (@, ...,x,)" € R*. Define f;: R" >R, i =1, ..., n, as
hl@) = a2 —1/9, [i(#) = — 2,2, , fo(a) = —wy@,, fu(®) = —m,, for k>4

Let f(@) = (Fu(@), ..., Ju(@))".

Define functions V,;: R* - R, ¢ =1, ..., » + 1, as follows:

Vilz) = wl“‘“\/gl3 ’ Vi(@) = — (‘7“1/\/5 + 1)2 + @5+ a§ ’
V@) = —x,—+5/3, V(@) = — (—ay/v/5 +1)2 + a? + a2,
Vilw)=ai_,—1 for k=5,...,n4+1.

Let #F={V,|i=1,..,n41}, ¢ ={geR*|V ()< 0 for i=1,..,n+1}.
It is a matter of a simple eomputation to show that property (1) holds. Prop-
erty (4) follows from the fact that ¢ is bounded and convex. Also, property (2)
is easily proved. Now, f(#)=0 if and only if o= (41/3,0, ..., 0)7, hence
f(@) = 0 implies # € ¢. Moreover, det Df(w) = (— 1)»3%z®, hence d[f, &, 0] = 0.
Now Hopf’s thecrem implies that 7 is null-homotopic, i.e. f 2@ can be extended
to a continuous mapping f': C1 G — R» such that fi{(z) % 0 for x € C1 G. The
appreximatien of f* on Cl G by a suitable C®-mapping g: R*—R» completes
the proct of Proposition 2,

Remark. In[2], Jones and Yorke eonstruct an opE & = H(x) for n>3,
such that H(z)s= 0 for we R* and & = H(x) has only bounded solutions.
Their example serves a different purpose than ours, and it cannot be used
in our situation, since the solutions of & = H(x) move on torus surfaces, and
hence the retract properties of WaZewski’s principle are not satisfied.
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Sunto

In questa nota si esamina lo relazione tra il metodo topologico di Mawhin e il prin-
cipio di Wazewski per le equazions differenziali funzionali (%) & = f(t, z,), v € R* del
ttpo di Carathéodory. Piiv precisamente, ci si chiede se le wpotesi del principio di Wazewski
stano sufficienti per Pesistenza di una soluzione periodica di (). Si dimostra, che lo vi-
sposta ¢ affermativa se m =1, 2 ¢ negativa se n >3, cosi chiarificando lo relazione ira
Pindice di Browwer e le proprietd ritrattive di Wazewski degli insiemi in R".
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