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F. CAGLIARI ana M. CICCHESE (%)

Epireflective subcategories and epiclosure (**)

Introduction

Let € be a category of topological spaces and continuous functions, which
is full, closed under homeomorphisms and hereditary. In this paper we intro-
duce a closure operator in ¥ (called epiclosure) and compare it to another
operator (called k-closure) introduced by S. Salbany in [8].

By means of a counterexample we prove that the two operators are dif-
ferent. Besides we show that they are related to the categorical notions of
extremal epimorphism and kernel.

Their usefulness comes along mainly in the characterization of epireflective
subcategories of a co-well-powered category ¥. These subcategories are exachly
those which are closed under products of spaces and k-closed (or epiclosed)
subspaces.

It € =T, (Hausdorft spaces), epiclosure and k-closure are both equal to
topological closure: this yields the well known theorem characterizing epire-
flective subcategories of T5,.

Comparing k-closure and epiclosure shows clearly that the latter one is
the moreé adeguate notion to deal with problems concerning epireflective sub-
categories of %.

Using epiclosure, it is possible to express the condition for colocal smallness
of € in a simple way, and to characterize epireflective subcategories of %, and
to construct the epireflection in a very natural way.

(*) Indirizzo: Istituto di Matematica, Universitd, 43100 Parma, Italy
(**) Lavoro eseguito nell’ambito del G.N.8.A.G.A. (C.N.R.). — Ricevuto:
18-VII-1980.
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1 - K-closure and epiclosure

Let Top be the category of topological spaces and continuous funections ().

A topological category is a full subcategory of Top which is closed under
homeomorphisms.

A topological category is said to be hereditary if it is closed under sub-
spaces, productive if it is closed under products of spaces.

Throughout this paper, € will be a hereditary topological category.

Let 4, X be objects in ¥ such that 4 ¢ X. Then we define

(a) the k-closwre of A in X (which we denote K.(4)) to be the set
{we X|f(x) = g(w), for each f,g: X — Y in % such that 7|4 = g|4} (3);

(b) the epiclosure of A in X (which we denote Ex(A4)) to be the union
of all subspaces V of X containing 4 such that the inclusion of 4 in ¥ is an
epimorphism in %.

The following properties of these two operators can be easily verified:

11 AcKg4), A c B(A);

1.2 AcB = Kyd)c KyB), A CB = By(A)c By(B);

1.3 Ky(Ky(A)) = Ki(4), By(By(A)) = Ex(4) .

These relations show that both E. and K, arve « Moore closure operators »
(see [2], p. 8).

Since the inclusion of 4 in Ey(4) is an epimorphism, E.(4) is the largest

subspace V of X such that A cV and the inclusion map from A to V is an epi-
morphism in %.

From the definition we also have
14 FBe(4)c Ky4)

and equality holds if and only if the inclusion of 4 into H,(4) is an epimor-
phism. As a special case we have

1.5 Kyd)=X = Be(d)= X .

() We refer to [11] for notations or terms which are not explicitly defined.
(* This closure is the same as the one defined by Salbany (see [8]).
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1.6 - Definition. A subspace A of a space X in € is k-closed in X if
Ky(d)= A; A is epiclosed in X if Hy(d)= 4.

From 1.1 and 1.4 it follows immediately that each k-closed subspace is
also epiclosed.

1.7 - Proposition. Let X be a space in €, Ac Bc X, and let B be epi-
closed in X; then Lp(A) = Ey(4).

Proof. Since 4 c B we have Iy(A) c Ex(B) = B, B being epiclosed in X;
hence, by definition of epiclosure, I(A4) = Ex(4).

A proposition similar to 1.7 does not hold for the k-closure. In fact, as
we will show in the last paragraph, the epiclosure and the k-closure do not
coincide on every topological category and the following proposition holds.

1.8 - Proposition. Let X be a space in €. The following conditions are
equivalent:

(@) Ey== Ky;
(b) for each B which is k-closed in X and for each 4 ¢ B, Ky A) = Ky(A).

Proof. (a) = (b). It follows immediately from 1.7.

(b) = (a). Let A be a subset of X, and B = Ky(4). Since B is k-closed,
Ky(A) = Kx(A) = B. By 1.5 we have Fy(4) = B. By 1.4 B is also epiclosed.
So, by 1.7, it follows Hy(A) = Eg(Ad) = B = Ky(4).

1.9 - Proposition. If ¥¢ Ty, for any X in € and for any A c X, we have
Ey(4) = Kyx(4) = A.

Proof. Since ¥ is hereditary, if ¥ ¢ T, there exists a two-point space
Y = {y, 4o} in €, with the indiserete topology. If X is in ¥ and AcX
the maps f1, f, from X into ¥ defined by fi(X) = {1}, fo(4) = {y.}, fo(X\4)
= {y.} agree over A; so Ky(A)= A and by 1.4 B, (4) = A.

1.10 - Proposition. For each X in € and for each ac X we have

E({a}) = {a}.

Proof. The identity map of X and the constant map k: X — X, such
that %(X) = {a}, agree over {a}, hence the conclusion.

The closure operators K, and Ly are not always Kuratowsky operators,
as the following example shows.
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111 - Example. Let X be a rigid space with more than two points
(see [3], p. 134), i.e. a space such that the only elements of C(X, X) are the
identity map and the constant maps; let € the « epireflective hull» of X in
Top (see [4], p. 284). X being rigid, two maps f, g in C(X, X) which coincide
on a subset of X with at least two points, are the same map. If Y is in &
there is a set M such that ¥ c X¥. Let f, ye C(X, Y) and suppose they agree
on a subset A of X with at least two points. By composing f and g with the
natural projections p; from X% onto X, we obtain p,h = p,;¢ for each je M,
and so f = g¢. Finally, by 1.10,

A if 4 is a singleton
Ky(A) = B(4) = <
. X if A bas more than one point.

This proves that neither I’y nor E, are Kuratowsky closure in this ease (?).

Let X, Y spaces in €, AcX, fe (X, Y). The following properties can
be easily verified:

1.12 f(Ex(4)) c Ko(f(4));

1.13 f(Bx(4)) c By(f(4));

1.14 f is an epimorphism in % iff K.(f(X)) = Y;

1.15 f is an epimorphism in % iff Fy(f(X)) = Y.

2 - Epireflective subcategories
Throughout this section % will be a hereditary topological category.

2.1 - Proposition. A morphism f: X - Y in € is an extremal mono-
morphism (see [4], p. 110) if and only if f is an embedding such that Ey(f(X))
= f(X).

(3) Salbany in [8] suggested to look for such an example.
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Proof. Let f: X - Y be an extremal monomorphism in %. f has the

following factorization
B, (/X

where ¢ satisfies g(#) = f(#) for every x € X, and j is the inclusion of By(f(X))
into Y. By 1.7 and 1.15, ¢ is an epimorphism, hence it is an isomorphism,
since f is an extremal epimorphism. Thus f is an embedding as a composition
of two embeddings, moreover By(f(X)) = f(X).

Conversely, let f be an embedding such that BEy(f(X)) = f(X). Let f = hg
in

Z

where Z is in % and g is an epimorphism in . Therefore h(Z) = h(E,(g(X)))
cEy(hg(X)) = Ey(f(X)) = f(X). As f is an embedding, we can define the
map k: Z — X in the following way: k(z) = f~1(h(2)), for every ze€ Z. Clearly
kg = idy, and since g is an epimorphism, ¢ must be an isomorphism.

- Proposition. If ¥ is productive, & morphism f: X - Y in € is
a kernel if and only if f is an embedding such that Ky(f(X)) = f(X).

Proof. Let f be the kernel in ¥ of the morphisms g, h: ¥ — Z. Since &
is hereditary, f is an embedding. So, let j be the embedding of K(f(X)) into ¥.
Being gj = hj, there exists a map k: Ky(f(X))— X such that fk = j. Then
I (f(X)) = f(X).

Conversely, let f be an embedding such that Ky(f(X )) = f(X). EfX)= 1,
f is obviously a kernel. Otherwise, if f(X) == ¥, for each y € Y\ f(X) there
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exist a space Z, in ¥ and two maps g,, h,: ¥ — 7, such that g,|f(X)
= h,|g(X) and g,(y) 5 h,(y). Let Z = [[Z, be the product of the spaces

K4
Z, and p,: Z — Z, the projection of Z onto Z,. It can be easily verified that f
is the kernel of the maps J, h: Y - Z defined by the relations p,g = ¢.,
Pyh=h,.

2.3 - Definition. We say that the category has a controlled epiclosure
if, for every X, Y in ¥ and for every embedding f: X — ¥, we have

- | B (f(X) | < m(X)
where 7(X) is a cardinal number which depends only on X.

2.5 - Proposition. % is co-well-powered (see [4], p. 44) if and only if
it has a controlled epiclosure.

Proof. If ¥ is co-well-powered and {¢;: X — A} is a set of represen-
tative for the epimorphisms with domain X in % (see [4], p. 43), 2.4 is verified
by setting n(X) = | U 4.|.

Conversely, if 2.4 is verified and ¢: X — Y is an epimorphism in %, we
must have | Y |<n(e(X)). Since |e(X)|<|X |, it follows that n(e(X)), and so
also |Y |, cannot exceed a gii‘fen cardinality, only depending on X. So ¥
must be co-well-powered.

The relations among the notions of %- closure, epiclosure and the corrispond-
ing categorical concepts allow us to prove, more satisfactory, some general
theorems which characterize epireflective subcategories of given topological
categories.

2.6 - Proposition. Let 2 be a topological epireflective subecategory of o
hereditary and productive topological category €; 2 is closed under products and
epiclosed subspaces.

Proof. It follows from [4] (p. 282) and from 2.1.

- Proposition. If € is a productive and hereditary topological category,
with controlled epiclosure, and 2 is « lopological subcategory, closed under pro-
ducts and epiclosed subspaces, than 2 is epireflective in €.

Proof. It follows from [4] (p. 282), from 2.1 and from 2.5. Using the
epiclosure operator it is possible to build the epireflection in a very simple
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way. Let X be a space in ¢ and {e;: X — D}, with D, in 2, a set of repre-
sentative epimorphisms of X (in 2). Let r: X H D; be the product of the

morphisms e; and R, the epiclosure of #(X) in HDi; the map +": X — R,
induced by r, is the epireflection of X. i

2.8 - Corollary. Let % be a productive and hereditary topologieal category
with controlled epiclosure. A topological subcategory of € is epireflective in
€ if and only if it is closed under products and epiclosed subspaces.

3 - Examples

Let € be a hereditary topological category, X be a space of € and 4 c X.

IE#¢ T, or € = T, we have Ey(d) == 4. So % has a controlled epiclosure
and the epiclosed subspaces are the subspaces.

If % is either T, or T}, or the category of Tychonoff spaces or the category
of 0-dimensional 7, spaces or the category of totally disconnected T, spaces,
it is By(Ad) = 4. So % has a controlled epiclosure and the epiclosed sub-
spaces are exactly the closed subsets.

If € = T,, the epiclosure is the b-closure (see [6]). TFurthermore in this
cage the epiclosure is controlled (see [5]).

The following example shows that K, and I, are not always the same.

Let Ty, the category of Urysohn spaces. The interval [0, 1] with the natural
topology 7 is in Ty,. In [0,1] we consider the topology +' generated by the
open sets of v and by the sets

1
20 (k=1,2,3,..),

and denote this topological space with X — ([0, 1], 7). Being 7' a finer
topology than 7, it is clear that X is a space of T,,.

Let 4 = {1/n|n = 1,2, 3, ...} and suppose 7, g: X — ¥ are two morphisms
of T, such that /|4 = gl4 and f(0) = g(0). So in Y there exist two closed
disjoint neighbourhoods ¥, and 7V, 2 of (0) and g(0) respectively. So the inter-
section f~YVy) N g}(V,) is a closed neighbourhood of 0. The family
{Ux|k=1,2,3,..} is a fundamental system of neighbourhoods of 0. So for
some k, U.cfV,) N g=(V,) and hence

T, =10, 11 FV) A g0 = F47) A g (7).
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Therefore, for any #» >k, f(1/n) eV, NV, and a contradiction follows. Then
0 e Kx(A4). More preecisely: Ky(4) = {0} U 4.

Since A is closed in X the topology induced on the set {0} U A4 is discrete.
It follows that Fi(d)= A (%).
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Sommario

Tramite Vintroduzione di un particolare operatore di chiuswra, detio « epichiusura »,
“wengono studiale e, in certe condiziond, caratlerizzale le sotlocategorie epiriflessive di una
qualsiasi categoria di spazi topologici e funzioni continue che sia piena, chiusa per omeo-
morfismi e ereditaria.

* ok R

(3) In[9] the author studies the epimorphisms of the category T, introducing a
closure operator A of a subset 4 of a space X. It can be easily proved that such a closure
is the k-closure. Mistaking the k-closure for the epiclosure, the author classifies the
kernels of Ty, instead of classifying the extremal epimorphisms.



