Riv. Mat., Univ. Parma (4) 8 (1982), 71-79

Moses BOUDOURIDES anda DIMITRIS GEORGIOTU (%)

Asymptotic behavior
of nonlinear Stepanoff-bounded functional

perturbation problems (**)

1 - Introduction

Consider the functional differential equation
(m a'(t) = AWa(t) + 1(t, T, @) ,

where ¢ € R, € R, A(t) is a continuous » xX#» matrix, f € C[R x C[B, R"], R*],
B a compact subset of B and T: Rx C[R, R*] — C[B, R*] is defined by =~

T, 2)(9) = w(a(l, 9)) deB,

for given a«e C[R X B, R].
Problem (1) can be thought of as a perturbation of the linear problem

(2) : , Yty = A@Dy() .

We are going to study the asymptotic relationship between problems (1)
and (2), such that to each bounded solution ¥ = y(¢) of (2) there corresponds
at least oné bounded solution # = (#) of (1) such that lim |y(¢)— =(f)| = 0.

[t} >

The question of this asymptotic relationship has been answered by Hal-
lam [3], generalizing previous work by Coppel [2], Staikos [5], Brauer and
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Wong [1] and Talpalaru [6]. Hallam’s innovation is based upon the intro-
duction of four projections, the use of the entire real axis R, the general
asymptotic growth conditions imposed on the solutions of the linear problem (2)
and the allowable degree of nonlinearity of the funectional perturbation f.

In the present work, it is our purpose to relax the conditions on the asymp-
totic estimate of the nonlinear perturbation f, in the cost of slightly streng-
thening the conditions on the linear problem (2). To this end, we are em-
ploying « Stepanoff-like » conditions on f for L+type theorems, 1< g < co. In
a simplified version of the above question, Lovelady [4] treated Le-type theo-
rems (1 < ¢ << oo) for nonlinear Stepanoff-bounded perturbation problems.

2 « Preliminaries

In the sequel, we suppose that R* can be decomposed as the direet sum
RBr=X,®X 0 X,®X,, where the subspaces X,, ¢ = 0, 41, oo, are deter-
mined as follows.

We have y,e€ X, if and only if the solution y(t; 0,1,) is bounded on R;
Y€ X @ X, if and only if the solution y(t; 0,1, is bounded on [0, oo);
Y€ X:® X, if and only if the solution y(t; 0, y,) is bounded on (— oo, 0];
and X_ is the direct complement of X, X.,® X,.

To the above complementary subspaces, we associate the corresponding
projections P; (¢ = 0, -£1, oo0). Then y(¢; to, ¥,) is written as

Y(t; o, Yo) = [Dolt; 1) -+ D_s(¢; 1) + Dut; o) + Do(t; 1)1 %0

where D(t; b)) = Y (t) P, Y- '(t,) (i= 0, +1, oo), and Y() denotes the funda-
mental matrix of the linear problem (2).

In what follows, f(t) and I'(f) are nonsingular # Xn matrices that arve con-
tinuous on B. In our main results, we are going to make use of the following
lemma proved by Hallam [3]

Lemma 1. (i) Let there cxist a projection P and constants t,, K > 0 and ¢,
1<q << oo, such that

[ftlﬂ(t) Y()PY-Y(s)I'(s) |7 ds]Ve< K t>1,,

and suppose that [©|I-1(1)f-1(t)|-7dt = oo. Then lim |p(t) Y(1)P] = 0.

1>
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(ii) Let there exist a pmjectwn P omd constants t,, K >0 and q, 1<g< oo,
such that .

[f]ﬂ ) PY(s) [ (s) | ds]V 1< K ty>t,

and suppose that [|1(t)f-1(t l“q dt = co. Then Lm |B(t) Y(I)P|= 0.
—» t— o
3 - Main results

Theorem 1. Suppose that equations (1) and (2) satisfy the following hy-
potheses. -

(i) There exist supplementary projections P; (i= 0, 41, o) and con-
stants K >0, a > 1, such that for all icR

®) S (100G TG ds+ S o) TIA0 B 9 0 as

v © okt
"‘glp(k)kﬂﬂ(t)@l(t; 8) ['(s)|ds< K,

where

k keZ—{0
o= M1 A0

where Z denotes the set of integers.

(@) JIrOpn dt=co, | [T dt= oo
(iil)  For all (t, y)eRx C[B, k"]
P Y-1(t) 1, p) =0 .

~ (iv) There emists w € O’[RXG[B R,), R,], w(t, 7) nondemeasmg in v ]‘01
fuved te R and for each (t, v)e Rx C[B, E7]

(4) AT v <ol | T A L)

where. R, = {te R: t>0} and |u|p = sup |u()|.

t€EB
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(v) There exists a solution y = y(f) of (2) and two constants 2, g, where
A>p>0, such that |f(t)y(t)|<o for all te B and

{, )< ,
© swpol, < 5 Rsa)’

lim —1— sup (s, A) =0
©) oo Pk) poits ’
where s(a) =1 -+ > k™ (convergent series, since a>>1).

k=1

. Then there .exists a solution x= x(t) of (1) such that 1Bt)z(t) | <A for all
te R and '

(0 : lim [A(1)(@(t) —y(@)) | =0 .

|¢]—>o0
Remark. If tin (3) is not integer, we include in the three sums of (3)

the following three integrals respectively

cp(m)[g.' 1B)Pa(t; 5) I'(s)] ds

t ' [e+1]
1) f1PO @ 9 T a5 150),  or  (0) Tl @utt; 5) T(s) | as <0y,

and
[t+1]
<P([t]) Ilﬁ(t)Ql(t; 8)1'(s) l ds,

where [¢] denotes the greater integer less or equal to . This remark will hold
for the rest of the theorems.

Proof. Let (p the Banach spaeevof z e C[R, R‘"}. sﬁeh that Bya(t) is

bounded on R. The norm of e (s is given by |x|s = sup [f(#)«(t)|. Consider
{ER
the subset (s, of the Banach space Cp defined as Opr={we Cp: |@|a< A}

Clearly, Cg. is closed and convex. We define an operator F' on (s, as follows

Fa(t) = y(t) + f D_,(t;5 8) f(s, T(s,2)) ds

F [ B(t; ) f(s, Tls, @) ds —[Ba(t; ) f(s, T(s, @)) ds.
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First we shall show that FCsC Cps. In fact, from (i), (iv)

, {v) and that
|T(¢, B)- T, ®)| ,<A for any z€ O we have

BOPO<1BOYO+ 3 T1BO Pt ) T6) ols, 2) ds

k=t k-1

+ 3 TIB0 9 T6) fols, 2 ds

=+

+ 3 flﬁ(t ®,(t; 8)1(s) |e(s, 2) d

k=t E

<1B@&)y)| +§¢*l(k> sup  oofs, mcp(k VB P_(t; 5)T(s) | ds

k-1 <R

' *+
+ > @ Yk) sup (s, A) f«p(k)}ﬁ(t)@o(t;s)]"(s)]ds
k=0, [ft20 E<s Kk k

k=1, if <<0

+ >l (k) sup (s, A) f q)]x [B(t)Di(t; ) (s)|ds< A
k=t ESs<EH1
We claim that F is continuous on Cp.. Let {x,}, z€ Cp, such that {x,}
converges to x uniformly on compact intervals of R.

For any ¢> 0 and a compact I = [tx, t*] C R, because of (6), we can
choose a k,€Z sufficiently large, such that — k;<t, and t*<k, and

su A< k for all |ki=>k, .
k<s<172+1a)(s, )< 6KS( )(p( ) [c[ "

Since {f(s, T(t, z.))} converges to f(t, T(t, «)) uniformly on [— J, %], there
is a 0 <N e€Z such that

sup | IH(@)(f(t, Tt @) — (2, T2, 2))) |

—~E <tk

&
<m fOl arll n¢N.

Thus from (i), (iv) and (v), it follows that for all te R and >N

B[ Fa,(t) — Fa(t)]] < 2’_21” sup o, }t)k_f [B(t) D_(t; ) (s) | ds

k=k; E—1<s<k

—}—2% sup w(s, A) jfﬂlﬁ(t)@l(t;s)]’(s)]ds

k= E<s<kH1

— o

+_swp (P8 (f((s, T, w)— (s, L6, )3 | IBOPL; 9 I(5)] ds

E=t k-1

¢ k1 o p+l ]
+_ 3 Tsoowareias+3 Tisoeesreas <.
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The next step is to show that F'(s, is bounded and equicontinuous (then
Ascoli-Arzela theorem would imply that FCs, is relatively compact). Indeed,
since I'Cs 2 C Cpa, FCp; is bounded and since z = Fz is a solution of the
equation

dz

T =40z +1(1, e, 2)) s

we have that (Fa)' is bounded, which implies that Fa is equicontinuous. So
using the Schauder-Tychonoff Fixed Point Theorem, we have the existence of
a fixed point @ of I in Uga. Thus

#(t) = () + [ D, (4 9)f(s, T(s, @) ds

[ Bults 8)i(s, Tts, 2)) ds — | Bolt; s)f(s, T(s, @) ds

solves the equation (1).

It remains now to show the asymptotic equivalence between a solution
of (2) and the corresponding solution of (1).

First we shall examine the case t — -+ co. Because of (6) we can choose
a sufficiently large integer k,> 0 such that for all |k|>k,,

sup s, A) <

. ESs<Rtl

8 -
ﬁ(ﬁ(’f) .

By (3) it is easily seen that the hypotheses of Lemma 1 hold for ¢ = 1.
Hence we have lim |f(#) Y () P;| =0 (i =—1,0).

1>

Tt follows that we can choose an integer k; > k,, so that for all i>k,
ke
B YR, | | X1(s) f(s, T(s, :v))[ds<§- ik, .
e :

Thus for t>k, we obtain from the above relations together with (i), (iv,
and (v)

B —yBl< > sup sHlﬁ ) I'(s)] s
k=—ls E—1<s<k k1

—Hﬂ t)Pliij—‘ ()f(s, T m))]as+;ﬁ(t)Y(t)po|j'|Y—l(s)f(s, T(s, )| ds

-+ z sup (s, A ﬂ[)’(t Wt 8) () | ds + z sup w(s, A )ﬁi‘i(t) Dy(t; )1 (s) | ds

k=t k~1RsKEk k=ks R<s<Ek+1

k+ i sup s, Z)ﬁlf}(t)cbl(-t;s)F(s)|(ls<a.
k

k=t k<s<E41

The ecase t — — oo is treated similarly as in Hallam [3].
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The previous theorem can be generalized through L=type conditions by

the next two theorems. Their proofs are omitted as they repeat the proof
of thm. 1 (see also [3]). :

Theorem 2. We suppose that the following conditions hold.

(i) There emist supplementary projections P; (i= 0, 41, o) and con-
stants K, q withK > 0 and 1 << q < oo, such that for all te R

(8) L—__Zw (.Ijl/g(t)@_ﬂt; s) F(S)lﬂds)lla _};D tz g ( fﬁ%(t)@o(t; 8)I(s) lqu)”q
+ kg (:,ﬂ;g(t) D(t; s)I'(s) }'Ids)l/Q<I{ .
(i) I = o0, [T @) |~ dt = oo .

(iii) For all (¢, y)e R X C[B, R*]
P Y ) f(t, p)=0.

(iv) There ewists we C[Rx C[B, R,], R 1y oft, ¥) nondecreasing in r for
fized t€ B and such that for all (t, p) e Rx C[B, k")

(101, v) <o, | T B) s -

(v) There exists a solution y = y(t) of (2) and two constants 2, 0, where
A>0>0, such that for all p given from p-1 -+ ¢gt'=1 and for all t€ R,
IBOy)|< and

e+l ole ; d s ).__9
(9) (J‘Q)(&, L) S) <T.

¢

Then there exists a solution x = x(t) of (1) such that [B)2() | <A for all te R
and (7) holds.



78 M. BOUDOURIDES and D. GEORGIOU [8]

Theorem 3. Suppose that the following conditions hold.
(i) There ewist supplementary projections Pt = 0, 4-1, oo} and positive .
constants K;, o;(j = 1,2, 3) and q, 1 < g << oo, such that for t,se R
(10), |B() D_a(t; 8) ['(s) | <Ky exp [— an(t— $)],
for all se{k—1, %k} and for all keZ, k<i;
(10), [B(8)Do(t; 8)I'(s) | < Kpexp|[— oo |t—s]], for all se[k, k4 1]
and for all keZ, 0<k<?t— 1, when >0, keZ, 0>k>t4 1, when t<<0;

(10), |B(2) Dy(t; 8) I7(s) | < K3 exp [— ag(s — 1)]
for all se[k, %+ 1] and for all keZ, k>t.

(ii) Let conditions (ii), (iil) and (iv) of Theorem 2 hold.

(1) There exists a solution y = y(t) of (2) and constants 1, g with
A> > 0 such that |B()y(t)|<o for t€ R and condition (9) is satisfied with

z“ (1 —exp [— qo;])/e
A (qoe, a(1— exp [— o))

Then there ewists a solution = x(t) of (1) such that |f()x(t)|<A for all te R
and (7) holds.
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Riassunto

In questa Nota abbiamo studiato il comportamento asintotico della soluzione di una
equazione differenziale nonlineare con perturbazione funzionale di una equazione differen-
#iale lineare. A questo scopo usiamo condizioni del tipo di Stepanoff per teoremi L9 con
1 < g < oo. Questo studio viene applicato su tutto Passe reale con Vintroduzione di quattro
proieziont e di un ammissibile grado di nonlinearity della perturbazione funzionale.






