A. M. CHAK (*)

Some generalizations of Laguerre polynomials (IV) (**)

This is the last paper of a series of papers studying the properties of some generalizations of the classical Laguerre polynomials. In 1956 the author [1]₁ took a completely different approach from the previous three papers of this series [1]_{2,3,4} and studied a generalization of the Laguerre polynomials. In this paper a few results not given in the earlier paper [1]₁ will be derived; also, a class of polynomials related to those studied by Srivastava [4] will be defined and some of its properties found.

Srivastava [4] took as his starting point a remarkable idea of Erdélyi [2] and obtained a generalization of Laguerre polynomials given by

(1)
$$\frac{1}{(1-u)^{\nu+1}} \exp\left[w - \frac{w}{(1-u)^{\lambda}}\right] = \sum_{m=0}^{\infty} \frac{u^m}{m!} \mathcal{L}_{m,\lambda}^{(\nu)}(w) .$$

He showed that $(D \equiv d/dx)$

(2)
$$\mathscr{L}_{n,\lambda}^{(r)}(x) = \lambda^n x^{-r+n+1} \exp[x] (x^{(1+1/\lambda)} D)^n (\exp[-x] x^{(r+1/\lambda)}).$$

It is easy to see that

(3)
$$\lim_{\lambda \to \infty} \frac{1}{\lambda^n} \, \mathscr{L}_{n,\lambda}^{(\nu\lambda)}(x) = G_n^{(\nu)}(x) = x^{-\nu} \exp[x](x \, \mathrm{D})^n \exp[-x] x^{\nu},$$

where $G_n^{(r)}(x)$ are the polynomials studied extensively by Toscano [7]. Steffenson $[\mathbf{5}]_{1,2}$ considers them as given by the generating function

(4)
$$\exp[\alpha t + x(1 - \exp[t])] = \sum_{i=0}^{\infty} \frac{t^i}{i!} G_i^{(\alpha)}(x).$$

^(*) Indirizzo: Dept. of Math., West Virginia Univ., Morgantown W. V., U.S.A.

^(**) Ricevuto: 18-II-1980.

The author $[1]_1$ studied the class of polynomials $G_{n,k}^{(\alpha)}(x)$ given by

(5)
$$G_{n,k}^{(\alpha)}(x) \equiv (k-1)^n \mathcal{L}_{n,(1/k-1)}^{(\alpha-k+1)/(k-1)}(x) = x^{-\alpha-kn+n} \exp[x](x^k D)^n (\exp[-x]x^{\alpha})$$
.

Putting k=2 and $\alpha=2-a-n$ we have

(6)
$$G_{n,2}^{(2-a-n)}(x) = x^{a-2-n} \exp[x](x^2 D)^n (\exp[-x] x^{2-a-2n}),$$

so that

(7)
$$(-1)^n \exp\left[-1/x\right] x^n \, G_{n,2}^{(2-a-2n)}\left(\frac{1}{x}\right) = y_n(x,a,1) \,,$$

where the polynomials $y_n(x, a, b)$ are the well-known Bessel polynomials studied by many authors and are given by

(8)
$$y_n(x, a, b) = b^{-n} x^{2-a} D^n(x^{2n+a-2} \exp[-b/x]).$$

1 - An integral representation of the polynomials $G_{n,k}^{(\alpha)}(x)$.

One of the results obtained by the author in his previous paper [1], is

(1.1)
$$\lambda_n \exp\left[-x\right] G_{n,1+1/\lambda}^{(\alpha)}(x) = \int_0^\infty \exp\left[-u\right] u^{\alpha_{\lambda}-1+n} J_{\alpha_{\lambda}-1}^{\lambda}(xu^{\lambda}) du ,$$

where $J_{\nu}^{\lambda}(x)$ is the Bessel-Maitland function defined by

(1.2)
$$J_{\nu}^{\lambda}(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n! \Gamma(\nu + n\lambda + 1)}.$$

To give another integral representation we follow Szegö [6], and easily get

$$(1.3) \qquad \int_{+\infty}^{(0^{+})} \exp\left[-u\right] u^{\alpha\lambda-1+n} J_{\alpha\lambda-1}^{\lambda}(-xu^{\lambda}) du$$

$$= \sum_{r=0}^{\infty} \frac{(-1)^{r} x^{r}}{r! \Gamma(\alpha\lambda + \eta r)} \int_{+\infty}^{(0^{+})} \exp\left[-u\right] u^{\alpha\lambda-1+n+\lambda r} du$$

$$= 2 \sum_{r=0}^{\infty} \frac{(-1)^{r} x^{r}}{r! \Gamma(\alpha\lambda + \lambda r)} \sin(\alpha\lambda - 1 + \lambda r) \pi \exp\left[-i\pi(\alpha\lambda - 1 + \lambda r)\right] \Gamma(\alpha\lambda + \lambda r + n)$$

$$= 2 \sin(\alpha\lambda - 1) \pi \exp\left[i\pi(1 - \alpha\lambda)\right] \sum_{r=0}^{\infty} \frac{(-1)^{r} x^{r}}{r!} (\alpha\lambda + \lambda r) \dots (\alpha\lambda - 1 + \lambda r + n)$$

$$= 2\lambda^{n} \sin(\alpha\lambda - 1) \pi \exp\left[i\pi(1 - \alpha\lambda)\right] \exp\left[-x\right] G_{n,1/\lambda+1}^{(\alpha)}(x),$$
for $\alpha\lambda > 0$ and $\alpha\lambda \neq 1, 2, \dots$

2 - Turán's inequality

In a very interesting paper, Szegő [6]₂ shows that Turán's inequality

$$(2.1) A_n(x) = (U_n(x))^2 - U_{n-1}(x)U_{n+1}(x) > 0,$$

holds good, provided $U_n \equiv U_n(x)$ have a generating function F(z) such that

$$(2.2) \sum_{n=0}^{\infty} U_n \frac{z^n}{n!} = F(z) \quad \text{and} \quad F(z) = C \exp\left[-\alpha z^2 + \beta z\right] \prod \left(1 - \frac{z}{z_m}\right) \exp\left[z/z_m\right],$$

also, Skowgaard [3] has made the observation that if $F(z, \alpha)$ satisfies the functional equation $\partial F/\partial z = F(z, \alpha + 1)$, exploited fully by Truesdell [8], and is of the form given in (2.2) then it satisfies Turán's inequality.

From the generating function of $G_{n,k}^{(\alpha)}(x)$ we see that

(2.3)
$$(G_{n,k}^{(\alpha)}(x))^2 - G_{n-1,k}^{(\alpha)}(x) G_{n+1,k}^{(\alpha)}(x) \geqslant 0 \quad \text{for } n \geqslant 1.$$

3 - Relation of the polynomials $G_{n,k}^{(\alpha)}(x)$ with the hypergeometric series

To find the relation of the polynomials $G_{n,k}^{(s)}(x)$ with the hypergeometric series we proceed as follows.

We know that [1],

$$(3.1) n! P_{n,r}^{(\alpha)}(x) = \mathcal{L}_{n,r}^{(\alpha)}(x^r) ,$$

where

$$(3.2) P_{n,r}^{(\alpha)}(x) = \frac{\exp\left[x^r\right]x^{-\alpha}}{n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} \left(x^{n+\alpha}\exp\left[-x^r\right]\right).$$

If r is a positive integer then it is easy to express $P_{n,r}^{(\alpha)}(x)$ through the confluent hypergeometric function pF_{σ} of Kummer by the formula

(3.3)
$$P_{n,r}^{(\alpha)}(x) = \exp\left[x^r\right] \frac{x^n}{n!} \prod_{m=1}^r \left\{ \frac{\Gamma((n+\alpha+m)/r)}{\Gamma((\alpha+m)/r)} \right\} r F_r,$$

where

$$(3.4) rF_r(\frac{n+\alpha+1}{r},...,\frac{n+\alpha+r}{r}; \frac{\alpha+1}{r},...,\frac{\alpha+r}{r};-x^r) \equiv rF_r.$$

From this formula we can easily deduce a general form for $P_{n,r}^{(\alpha)}(x)$.

Using the fact that the product of two hypergeometric functions of any order rF_s $(a_1,\ldots,a_r;b_1,\ldots,b_s;x)$ and ${}_\varrho F_\sigma$ $(\alpha_1,\ldots,\alpha_\varrho;\beta_1,\ldots,\beta_\sigma;-x)$ can be put in the form

$$\sum_{n=0}^{\infty} \frac{x^n}{n!} \frac{(a_1, n) \dots (a_r, n)}{(b_1, n) \dots (b_s, n)} \cdot s + \varrho + 1 F_{r+\sigma} \left\{ \frac{-n, 1 - b_1 - n, \dots, \alpha_1, \dots}{1 - a_1 - n, \dots, \beta_1, \dots} \right\},$$

where the positive or negative in the argument is to be taken according as (r-s) is even or odd, we get (since $\exp[x^r] = {}_{0}F_{0}(x^r)$)

(3.5)
$$P_{n,r}^{(\alpha)}(x) = \frac{r^n}{n!} \frac{\Gamma((n+\alpha+1)/r) \dots \Gamma((n+\alpha+r)/r)}{\Gamma((\alpha+1)/r) \dots \Gamma((\alpha+r)/r)}$$

$$\sum_{m=0}^{\infty} \frac{x^{rm}}{m!} {}_{r+1}F_r(-m, \frac{n+\alpha+1}{r}, \dots, \frac{n+\alpha+r}{r}; \frac{\alpha+1}{r}, \dots, \frac{\alpha+1}{r}; 1).$$

Whence an immediate conclusion is that

(3.6)
$$r_{+1}F_r(-m, \frac{n+\alpha+1}{r}, ..., \frac{n+\alpha+r}{r}; \frac{\alpha+1}{r}, ..., \frac{\alpha+r}{r}; 1) \equiv 0$$

for m > n.

4 - A class of polynomials related to $\mathscr{L}_{m,\lambda}^{(\nu)}(x)$

Let us now define another class of polynomials $L_{m,\lambda}^{(r)}(x)$ which are closely related to the ones studied by Srivastava [4] as defined in (1).

We define our polynomials $L_{m,\lambda}^{(r)}(w)$ by

(4.1)
$$\frac{\exp\left[-\frac{wu}{(1-u)^{\lambda}}\right]}{(1-u)^{\nu+1}} = \sum_{m=0}^{\infty} \frac{u^m}{m!} L_{m,\lambda}^{(\nu)}(w).$$

Differentiating with respect to w, we have

$$\frac{-u \exp \left[-w u/(1-u)^{\lambda}\right]}{(1-u)^{r+\lambda+1}} = \sum_{m=0}^{\infty} \frac{u^m}{m!} \frac{\mathrm{d}}{\mathrm{d}w} L_{m,\lambda}^{(r)}(w),$$

which easily gives the recurrence relation

$$\frac{\mathrm{d}}{\mathrm{d}w} L_{m,\lambda}^{(\nu)}(w) = -m L_{m-1,\lambda}^{(\nu+\lambda)}(w) .$$

Also

$$\frac{\exp{[w-w/(1-u)^{\lambda}]}}{(1-u)^{2\nu+1}} = \frac{\exp{[w-w/(1-u)^{\lambda-1}]}}{(1-u)^{\nu+\alpha+1}} \cdot \frac{\exp{[-wu/(1-u)^{\lambda}]}}{(1-u)^{\nu-\alpha}},$$

which shows that

$$\sum_{m=0}^{\infty} \, \frac{u^m}{m!} \, \, \mathscr{L}^{(2\nu)}_{m,\lambda}(w) = \sum_{m=0}^{\infty} \, \frac{u^m}{m!} \, L^{(\nu-\alpha-1)}_{m,\lambda}(w) \cdot \sum_{m=0}^{\infty} \, \frac{u^m}{m!} \, \, \mathscr{L}^{(\nu+\alpha)}_{m,\lambda-1} \left(w\right) \, .$$

Hence

$$\mathscr{L}_{m,\lambda}^{(2\nu)}(w) = \sum_{r=0}^{m} {m \choose r} L_{r,\lambda}^{(\nu-\alpha-1)}(w) \cdot \mathscr{L}_{m-r,\lambda-1}^{(\nu+\alpha)}(w) .$$

Now, let us multiply (4.1) by $\exp[-w]$ and differentiate with respect to w. We have on using $[1]_1$

$$-\frac{\mathrm{d}}{\mathrm{d}x}\left\{\exp\left[-x\right]G_{\scriptscriptstyle m,k}^{\scriptscriptstyle(\alpha)}(x)\right\}=\exp\left[-x\right]G_{\scriptscriptstyle m,k}^{\scriptscriptstyle(\alpha+1)}(x)\;,$$

the interesting relation

$$\mathscr{L}_{m,\lambda}^{(2\nu+\lambda)}(w)$$

$$= \sum_{r=0}^m {m \choose r} L_{r,\lambda}^{(\nu-\alpha+1)}(w) \cdot \mathcal{L}_{m-r,\lambda-1}^{(\nu+\alpha+\lambda-1)}(w) + m \sum_{r=0}^m {m-1 \choose r} L_{r,\lambda}^{(\nu-\alpha+\lambda-1)}(w) \cdot \mathcal{L}_{m-r-1,\lambda-1}^{(\nu+\alpha)}(w).$$

Again,

$$\frac{\exp\left[-wu/(1-u)^{\lambda}\right]}{(1-u)^{\nu}} = \sum_{m=0}^{\infty} \frac{u^m}{m!} L_{m,\lambda}^{(\nu)}(w) \cdot (1-w) \ .$$

Hence, we have

$$L_{m,\lambda}^{(\lambda-1)}(w) = L_{m,\lambda}^{(\nu)}(w) - mL_{m-1,\lambda}^{(\nu)}(w).$$

Putting v = 0 gives

(4.6)
$$L_{m,\lambda}^{(-1)}(w) = L_{m,\lambda}(w) - mL_{m-1,\lambda}(w) .$$

References

- [1] A. M. Chak: [•]₁ A class of polynomials and a generalization of Stirling numbers, Duke Math. J. 23 (1956), 45-56; [•]₂ Some generalizations of Laguerre polynomials (I), Mat. Vesnik (22) 7 (1970), 7-13; [•]₃ Some generalizations of Laguerre polynomials (II), Mat. Vesnik (22) 7 (1970), 14-18; [•]₄ Some generalizations of Laguerre polynomials (III), Riv. Mat. Univ. Parma (4) 7 (1981), 267-277.
- [2] A. Erdélyi, Über gewisse funktional-beziehungen, Monatsh Math. und Phys. 45 (1937), 251-279.
- [3] H. Skovgaard, On inequalities of the Turán type, Math. Scand. 2 (1954), 65-73.
- [4] H. M. Srivastava, Thesis approved for the Ph. D. degree, Lucknow University, India 1954.
- [5] J. F. STEFFENSON: [•]₁ The poweroid and the extension of the mathematical notion of power, Acta Math. 73 (1941), 333-366; [•]₂ On a class of polynomials and their application to actuarial problem, Skand. Aktuarietidskr, (1928), 75-79.
- [6] G. Szegö: [•]₁ Orthogonal polynomials, New York 1939; [•]₂ On an inequality of P. Turán concerning Legendre polynomials, Bull. Amer. Mat. Soc. 54 (1948), 401-405.
- [7] L. Toscano, Una classe di polinomi della Matematica actuariale, Riv. Mat. Univ. Parma (1) 1 (1950), 459-470.
- [8] C. TRUESDELL, An essay toward a unified theory of special functions, based upon the functional equation $(\partial F/\partial z)(z,\alpha) = F(z,\alpha+1)$, Princeton 1948.

< * *

1844 - 1844 - 1848 - 18

مائين الانداء أساسلين والقارات الانتسابيس والعا