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Maximal outerplane graphs and their associated trees (**)

1 - Introduction

Two recent papers by Antonucei [1];. have treated certain enumeration
problems for labelled and unlabelled maximal outerplane graphs, denoted
OM-graphs in his work. In particular, using their autemorphism groups, he
enumerates the number of triangulations of polygons with n-vertices having
no interior triangles and uses this to count the OM-graphs with three vertices
of degree 2. A related enumeration problem appears in Cohen [4] where a
rooted tree is associated with an OM-graph. Antonucei’s enummerations cor-
respond to associating unrooted trees with these graphs. By taking this
approach we are able to obtain enumerations of OM-graphs with an arbitrary
number of vertices of degree 2. We use these enumerations to give bounds
on the number of graphs which correspond to a given tree, and to define a
new class of trivalent trees.

Given any OM-graph G the natural way to asscciate a tree 7 with this
graph is: insert one vertex into each interior face of &, and make two vertices
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adjacent if and only if the corresponding faces in G have an edge in common.
Fig. 1a shows an OM-graph and its associated frece. A ftree T is the asso-
ciated tree of some OM-graph @ if and only if the degree of every vertex of T
is less than or equal to three[2]. Let .7 denote the collection of trees with
maximum degree less than or equal to three. In this paper we investigate
the set of OM-graphs associated with a given T'eZ .

We adopt the following notation: G(7) denotes an OM-graph with asso-
ciated T'; 9(T) denotes the set of all sueh graphs whose associated trees are
isomorphic to 7'; and |%(T)| denotes the cardinalily of this set. We em-
phasize here that even the same embedding of a tree 7' may be the associated
plane tree of two or more nonisomorphic members of G(T). In seetion 2 we
will show how to compute |9(T)| for any 7'€.7. This computation is based
upon theorem 3 from [4], the statement of which is given here for convenience:

Let G, and G, be OM-graphs with corresponding associated trees T
and 7,. Then T, and 7T, are isomorphic if and only if &, and G, are 2-iso-
morphic. (For a definition of 2-isemmorphism, see [5], p- 82.)

1t is also shown in [2] that any two labelled OM-graphs with isomorphie
associated trees have the same number of labelled spanning trees.

Let 7', denote a tree in 7~ with n vertices. It is apparent that the relation
of 2-isomorphism establishes a natural partitioning of the sct of OM-graphs
with 2 -+ 2 vertices into equivalence classes 4(Z1,). Since OM-graphs can be
viewed as triangulated convex polygons, counting the el-ments of the equi-
valence class #(T,) is a new aspect of the classic problem of triangulating &
convex polygon with n 4 2 vertices. In[6] Guy gives 2 formula for D,
« the number of dissections of a convex polygon of n + 2 sides into n tri-
angles by drawing various sets of n —1 nonintersecting diagonals », and for #,,
«the total number of essentially different disscctions». Let (1/2)(n + 3)
= (1/2)(n + 3) if = is odd and (1/2)(n -+ 2) if » is even. Note D, =0 if %
is not on interger. :

OIS 1 1 1., 1 '
'-D'n+2 - m y En+2 - m Dn+2 ‘{‘ 1 Dén+2+ 5 D§n+3 + g Dx/a(n+2)+1 .

In [3] Brown gives a history and bibliography of triangulations and related
combinatorial problems. In particular, Brown, and Harary and Palmer ([7],
p. 68) point out that cnumerating triangulations of rooted (n 4 2j-gons
(see [7], p. 6, for the definition) and enumerating planted plane trees with
2n - 2 vertices, (see[7], p. 60 and p. 66 for definitions), each of degree
one or three, are equivalent, and that this correspondence has been redisce-
vered many times going back to Euler. Harary and Palmer then use this
correspondence to enumerate planar 2-trees ([7], p. 76).
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Let 7 * denote the colleetion of trees in which each vertex has degree one
or three. We have a direct correspondence between a tree 77, €7 and a tree
T:‘"M e7*. To obtain Tf,l_‘L2 from T, we adjoin the n -4+ 2 vertices of degree
one corresponding to the n 4 2 exterior edges of G(T,), so that each of the
vertices of 7', which is not of degree 3 become a vertex of degree three in T:,,_m.
This construction is shown in Fig. 1b. It follows that finding [%(T,)| for a
given T, €7 is equivalent to finding the number of plane representations of
the tree Tif,,,;,z which are distinet under all rigid motions of T, 2. Since
T2 €7, it can be associated with OM-graphs G{T5,.,) having 2n - 4 ver-
tices, as shown in Fig. lc. Since this construction demonstrates the one-to-
one correspondence between the OM-graphs associated with 7', and those
associated with T;k,,“, we have shown that I%T,,)]:}Q(Tf,,+2){.

1a ib lc
Figure 1. An example of 7, G(T), T% and G(I'¥).

2 - Computation of |#(T)|

Let T'e€Z and let v be a designated pendant vertex of 7' (making 7' a
« planted » tree). Let 7* in .7* (all vertices having degree 1 or 3) denote the
planted free with root % which will become T if its vertices of degree one
(other than «) are removed. Let » be a vertex of degree 3 in T*. Consider
the two subtrees emanating from v which do not contain the root . If these
subtrees are not isomorphic, then two distinet plane representations of I'*
can be formed by interchanging the positions of the subtrees relative to .
We call v a critical vertex and we see that the number of plane representa-
tions of T™ will be 2% when 7™ has & critical vertices. (An algorithm to deter-
mine if two trees are isomorphic in time complexity O(n) has been described
by Hoperaft and Tarjan [8], pp. 140-142]). We define the corresponding ver-
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tex v in 7T to be a critical vertex of 7, and note that a vertex of degree 2 is
always critical in 7. Recalling the above comments, it follows that if 7 has &
critical vertices, there are 2% OM-graphs rooted at an orientable edge having T
as its associated tree.

To compute |F(T)!| for any frec cubic tree, we use the above observation
and straightforward applications of Polya’s Counting Theorem. The compu-
tation is necesserily done by coses:

Case 1. Some vertex of degree three in T iz fixed by every automorphism
of T (for example a single center of degree 3).

Case 2. Some vertex of degree two in 7 is fixed by every aunitomorphism.

Case 3. T has two centers of degree two, interchanged by some auto-
morphism.

Case 4. T has two centers of degree three, interchanged by some auto-
morphism.

In each case we focus our attention on the fixed vertex or the centers of T
and the corresponding face(s) of an OM-graph G(T) with T as its associated
tree. (In some instances, we consider other faces also.) The subtrees §,, S,,
and 8; of 7 emanating from these faces are viewed as planted and Polya’s
theorem is applied to the automorphisms of the faces which interchange iso-
morphie subtress. Since most applications of Polya’s theorem are straight-
forward, proofs for most cases are omitted.

Case 1. Supposc the tree T has a vertex ¢ of degree three which is fixed
by every automorphism of 7, and let S,, S, and 8, denote the subirees
rooted at c.

(a) If 8;, 8,, and §, are non-isomorphice, with %, k,, and %; critical ver-
tices, respectively, then

|F(T)| = 2Rttt kiy kay B3>0 .

(b) If 8; and 8, are isomorphic, each with k>0 critical vertices, and
8; has not critical vertex, then

(e) If 8, and 8, are isomorphic, each with k,>0 critical vertices and
8; has k,>1 critical vertices, then

| G(T)| = ¥tk | B0, ky>1.
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(d) If 8, 8., and 8; are isomorphie, each with k>0 critical vertices,
then

% (23L-+3.22k+2.2k)’ 7C>1

00| =

=
N 1, E=0.

Proof of (d). The case k=0 is trivial, so assume k>1. The group of
automorphisms on the face has order six. Consequently, the Polya theorem
will give us a count of 1/6(2% | 3-22% 4 2.2%),

However, because of the perfect symmetry of 7' it is necessary to provide
the face with an orientation in order to propertly root the subtrees. To find
|Z(T)] we must therefore divide by 2. This properly adjusts the count since
each automorphism has some orbit with an odd numbear of orientable subtrees.

Case 2. Suppose the tree T has a vertex ¢ of degree two which is fixed by
every automorphism, and let S; and S, denote the subirees rooted at ec.
(a) If the rooted subtrees S, and 8, are not isomorphic and have %,
and %, critical vertices, respectively, then

lg(T)l_—_ZhH’, kyy k>0

{b) If the rooted subtrees S, and 8, are isomorphic, each with k>0
critical vertices, then

Ty| =} [2%% 4 2], k>0,

Case 3. Suppose the tree T has two centers ¢; and ¢, of degree two which
are interchanged by some sutomorphism of 7. In this case

|G(T) | =242, k>0,

where k is the number of critical vertices of the subtrees 8, and S, rooted
at ¢ and ¢, respectively.

Proof. The subtrees S, and S5, are necessarily isomorphic. Therc are
two possible ways to arrange the two faces containing ¢; and ¢,, as shown by
Fgs. 2a and 2b. Polya’s theorem gives 4(22 -+ 2%) for each structurc.

c c
2
S S, 51 c, S,

Figure 2. Arrangements of the faces at the two central vertices of degree two.
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Case 4. Suppose the tree T has two centers ¢; and ¢, of degree three which
are interchanged by some automorphism. In this case edge (¢, ¢,) is a line
of symmetry for 7, and each of ¢, and ¢, subtend a pair of rooted subtrees
S; and 8,. '

(a) If the rooted subtrees S; and S, are non-isomorphic with %, and k,
critical vertices, respectively, then

| G(T) | = 22t gkt R 3,50

(b) If the rooted subtrees §; and S, are isomorphic each with & critical
vertices, then

(G(T)| = L [2% 1 3-25], k0.

3 - Upper and lower bounds for |¥(T,)|

In this section we will use the results of section 2 to find bounds for
|9(T,)| in terms of n and the nwumber of vertices of degree one, two, and
three. We note that for any tree in 7 the number of vertices of degree one
is always two more than the number of vertices of degree three. If T,e9
has exactly two vertices of degree one, then it is path P,, for if it has more
then T, will contain a vertex of degree 3.

Theorem 1. If P, is a path with n vertices
Qu—d o QUi=3)2 7 odd ,

| 9(Py) [ =
N \\2n—4 4 2=hf2 n even .

Proof. If » is odd, case 2 (b) applies; case 3 applies if »n is even.

In general, if 7, has k vertices of degrce one, we have the following upper
bound. ‘

Theorem 2. | 9(T,) | < 2% * 1 where k is the number of vertices of degree one.
Proof. There are at most » — & — 1 vertices of 7', for which the orien-

tation of the associated triangle in G(7',) makes a difference since nonce of the
vertices of degree one is critical and one other vertex is:used to root 7,.
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For k>3 this bound is achieved by an identity tree (see [7], p. 64, for the
definition).

Theorem 3. |[9(T,)|<|9(P,)].

Proof. If 7, is not a path, it must have at least 3 vertices of degree
one, hence |G(T,)]< 2%+, and the conclusion follows from Theoren 1.

Corollary. If I%eJ* then ]@’(Z‘f)ﬁfzf(.ﬁ(l’(n_g)/g)}.

T

Proof.” Note that Tj: has (n 4 2)/2 vertices of degree 1 and (n—2)/2
vertices of degree 3. The inequality is obtained by applying Theorem 3 to
the tree obtained by removing the vertices of degree 1.

Since |%(T,)| is determined by the number of critical vertices and the
symmetry of T',, we can give lower bounds for 19(T,)| in terms of the num-
ber of vertices of degree two. ‘

Theorem 4. Ifr is the number of vertices of degree two in T, and r = 0
(mod 3), then

laj(111z) I > ,}5_(21—2 _}__ 3 .2(2r/3)~2 + 2(1‘/3)—1) A

Proof. This is case 1 (d) with the assumption that the only critical ver-
tices are of degrec two and k replaced by #/3.

If we do not have the special symmetry present in ease 1 (d) this bound
can be improved.

Theorem 5. If r s the number of vertices of degree two in T, and r= 0
(mod 3), then

|9(T)

>|9(P,) | .

Proof. For any 7, in 7, the path P, has the greatest number of ver-
tices of degree 2, namely n—2. Thus r 4- 2<n for any 7,. Since in any
case the number of critical vertices (either k, %k + Ky, or &y - ko~ k) is
greater than or equal to 7, the inequality is scen by comparing [9(P,,,)]
from Theorem 1 to |%(T,)[ in ecach case.

We will call a tree T e a single trec if |#(T)| = 1. A planted tree from
Z" will have one and only one associated OM-graph if and only if it has no
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critical vertices. Such trees will be called symmetric trees of height r (see
Fig. 3), and are a subelass of the single trees.

Figure 3. A symmetric tree of height four.

A symmetrie tree of height » has 2-—1 vertices (excluding the root), and
we note that two of these frees are isomorphic if and only if they have the
same height.

It is easily seen that single trees can arise in all of the above cases except
for Case 3 and Case 4 (a). Moreover, with the exception of trees in Case 1 (¢),
all the single trees are formed by joining symmetric trees of perhaps different
heights at the rooted vertices. In the exceptional case subtrees S, and 8§, are
symmetric trees of equal height while 8; contains exactly one critical vertex v
adjacent to the fixed vertex c¢. - There are two possibilities here:

(i) vertex » is of degree two and acts as the root of a symmetric tree;

(ii) vertex v is of degrec three and acts as the root for two symmetric
trees of different heights.

In view of the limited strueture of the single trees in the various cases we
have the following interesting result.

Theorem 6. If T, is a single tree, then the number of vertices is
=27} 28 202 7y 8,10,

Proof. Supposc first that the single tree 7', is not in Case 1 (e¢). Then
T, is formed by joining three symmetrie trees of heights r, s, and ¢ (where a
single vertex can be thought of as a symmetric tree of height 0) at a com-
mon root, then 7', has (2r—1) + (25— 1) + (2*—1) + 1 =274 2+ |- 20t —2
vertices.

Suppose next that 7', is in Case 1 (¢), with ¢ the fixed vertex of degreec 3.
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Let the isomorphic subtrees S; and S, be symmetric trees both of height
r—1, r>1, with root at ¢. Rooted at v, adjacent to ¢, we have two sym-
metric trees of different heights s and ¢ (again s or ¢ may be 0). Thus 7', has
22 —1)+ 14 (2°—1) 4 (2¢—1) - 1 = 27 - 25 21— 2 vertices.

(1]

{2]

(3]

(4]
(5]

[6]
(7]
(81

Corollary. The smallest integer for which no single tree T', ewists is n =13;
the smallest even integer is n == 28.

W.

N.
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Abstract

Any trivalent tree may be regarded as the interior dual of a member of a class of
non-isomorphic mawximal outerplane graphs. We count the number of graphs associated
with any given tree, and use these counts to give bounds on the class size, and to define
a new class of trivalent irees.
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