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G. CAPRrIZ (%)

A cdntributioﬁ to the theory of rods (**)

1 - Introduction

In the mechanics of rods many problems arise which are interesting for
the theorist and also significant for the engineer. Some of these problems pro-
vide a testbed for new ‘analytical techniques and still others give hints for the
creation of sharper mathematical tools.

- In recent papers of mathematical flavour (see, e.g., [1]) the rod is repre-
sented as a one-dimensional continuum with local structure described by
directors (as in the treatise [2]).

The general model with three directors is more comprehensive than any of
the models accepted in engineering research and also than the classical scheme
of the elastica. On the other hand the latter schemes lead to relatively simple
and illuminating examples and counterexamples, in stability theory forinstance
(see, e.g., [1], and the papers quoted there; also [3],). It seems, therefore, not
without interest to classify the special models in a systematic way so that the
limitations sometimes implicit in special results can be more easily perceived
and the concrete implications of hypotheses accepted in general theorems more
simply deduced.

The procedure followed here for such classification mirrors developments
introduced in [3], for three-dimensional continua with affine structure.

Constraints of increasing severity are introduced and the geometric and
mechanical consequences explored. Actually, to obtain the classical special
theories, simplifying dynamic hypotheses must be also accepted. This aspect
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di aleune lezioni all’International Centre for Theoretical Plhysics, Trieste, nell’ambito
del Course on Ordinary Differential Equations, 1977. — Ricevuto: 27-XI-1980:
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of the matter is not pursued here, though a few hints are given; nor is any
mention made of special results which apply within the limits of the linear
approximation.

2 = The rod

A rod is taken here to be a one-dimensional continuum with affine micro-
structure; anyone of its placements is defined when the following quantities
are given:

(i) The position veetor p measured from a fixed point, as a smooth
function of a parameter s:

(2.1) P =pis), se[o0,s],

s is interpreted as arc length along the curve ¥ defined by (2.1), so that
|dp/ds| =1 and § is the total length of %.

(if) A triad of vectors d (B =1, 2, 3), the directors, again as smooth
functions of s in [0, §], with the condition

(2.2) dyy doyXdy #0.

If a reference triad ¢y, (H =1,2,3) of fixed orthogonal unit vectors is
given, one can assign, instead of the directors, the tensor K which has the
property that

(2.3) dyy = Kegy (H=1,2,3)

and is defined by

3
(2.4) K= ZH du® eun -
1

A variety of physical objects can be described within the scheme. Most
generally one can imagine a continuous string of separately deformable links.
More particularly, after the introduction of internal constraints of increasing
severity, one is lead to the schemes more widely used for the description of
bars, thin filaments, strings, ete.
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Further notation used in the paper is as follows:

(i) t, n, b are tangent, normal and binormal unit vectors for %, so that
Frenet’s formulae can be written in the form

dn_ dr_ dn_ . db_
(2.5) a0 oa P as

where » and t are respectively curvature and torsion of %.

(ii) d® (R=1,2,3) is the set of reciprocal directors, such that
3
(2.6) dp d¥=06;, pda®@d®=1;
1
in terms of the tensor K we have d’ = K-T¢y,, where K-7 is the inverse

of the transpose of K.

(iii) The tensor

3 dd
2.7 W= ZIR d(m ® d®,
with the property
dd,
(2.8) 5= Wi,

is the wryness of the rod.

With the use of the Ricci tensor £ as an operator over the space of vectors
(second order tensors) into the space of second order tensors (vectors), one
can introduce the vector w associated with W, such that

(2.9) w=}eW, skwW =¢ew.
Because £(a® b) = axb, one has

dd(R) % d(R)

L\Jx}—l

3
(2.10) 5 2R A
1
Remarks. Using Frenet’s formulae one obtains that

d d ab
(2.11) a£®t+£®n+—£®b=2skw (n®(xt -+ b))

and the vector associated with this tensor is 7t — xb.
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As we shall see, in most cases of practical interest one of the directors,
say dw, is constrained to be parallel to ¢: dg = vt. Then some formulae
take a more special form, e.g.

dd(m

212) W= z ® A sven + 0@ (KK7)-

3 - Displacement and strain

A particular placement of the rod is fixed from now on as the reference
placement and displacements are measured from it. Quantities read on the
reference placement are marked with an asterisk, in particular s* is the arc
length along €*.

A vector w and an invertible tensor G with positive determinant. (both
smooth functions of s*) are used to specify a displacement

(3.1) p=p*+u, dp= Gd(R) ) k=1,2,3.

In the formulae the independent variable is not shown explicitly; it could
be either s or s* because the correspondence between the variables s and s*
is assumed to be one-to-one: more particularly the stretch A, A= ds/ds*, will
be taken to be strictly positive and hence the extension 6= 1—1 always
larger than — 1. Notice the relations

h 3
(3.2) Je=gt 4 o5 I (33) G=Zada® d,
(3‘4) dm — G—Td*([i), (3.5) W — g_(_; G + AL GW G-,

To characterize strain many choices are possible; later developments accord
a special preference to the followmg choice of one vector e and two tensms
E and F: ‘

e = Gt — t*, E=}G"G—1),
(3.6) : . .
F=1G"WG — W+ = G adg

The displacement is rigid if and only if e, E, and F all vanish identically
(see [5], Sect. 63). :
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Proof. In a rigid displacement there exist a constant vector k and a
constant orthogonal tensor Q (with det Q = 1) such that p = Q(p k),
G = Q; it follows that F, E and e vanish identically.

Vice versa, if F' vanishes for all s¥*, G is independent of s*; if also E is
zero, G is necessarily orthogonal and det G = 4- 1 (because, by hypothesis,
det G is always positive); finally, if e vanishes, then: (d/ds*)(p — Gp*) =0,
G € Orth*; hence the displacement is rigid.

Remark 1. Notice the relations
1E
(3.7) G = K(K*), &s—; =sym (14 2E)F).

Remark 2. In the special case when d is constrained to be parallel
to t (see Remark in Sect. 2) we have e = (Av*[y —1)¢*. If the further con-
straint » = Ap* is nltroduced i.e. it is assumed that Gt*= At, then e vanishes
identically.

Remark 3. The definitions of this and the previous Section are given
so as to allow a direct comparison with formulae of [4]. Other Authors prefer
different strain characteristics; sometimes (see [6], Sect. 61) the following
anholonomic components of strain of orientation are used because within
certain contexts they are more convenient, as we shall mention

(3.8) Tns = (Wdip) - disy— (W*d(y) - dg).

Actually these components Jzs can be interpreted ‘LISO as components on the
fixed system d(*,,) of a new tensor J

J=G"WG—W*,
In fact
Ias = (WGd(R) Gd(s)— (Wd(m (9 = ((GTWG W*)d ) dy;

81

notice that

dG : aG

J=176"35+ (6 —167) W) = 2(G” T (2E+@1—A1) W) -

— 1L+ 2E)(F + W) — W,

These formulae can be used to prove that a displacement is rigid if and only
e=0 E=0, J=0. ‘
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4 - Kinematics

Congsider a motion of the rod, i.e. a family of placements depending smoothly
on the parameter ¢, the time.
Then the speed

(4.1) v=p=u,
and the wrenching
(4.2) U= KK = GG

(see Remark 1 of Sect. 3) become relevant, together with a measure of the
rate of change of wryness. 4

For this measure, use will be made of the time-derivative of the tensor F;
for F' the following relation applies

LU

aan O

(4.3) F=G-

in fact, for the inverse of a tensor one has

. oG oG
(G—-l)- = — G GG‘l, and Fye =— G 5}2 dG’"l.

Notice also the expressions of the time derivatives of e and E

(4.4) e =—AG-1 Ut + G g;é , E =sym(G*UG) = Gr(sym U)G .
In all these formulae (and also later) a dot indicates, of course, a partial
derivative with respect to time of the relevant function expressed in terms of
s* and 1.

If g(o*) is the density of the rod, i.e. the mass per unit length in the place-
ment at the instant ¢ (in the reference placement) a standard argument leads
to the equation of conservation of mass

(4.5) oA —o*=0.

Because 0v[0s* = 2*p[ds* 0t = (At)' = At + Af, eqn. (4.5) implies

(4.6) 6+ozt=0.
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Remark. Local, rather then referential, developments are rarely of
interest in the theory of rods. Nevertheless we notice the relation

do(s, 1) . 9, s ow(s,t
(4.7) Q(;t )+a—s(90 v(ass )~t(s,t)ds)=

which follows from (6) and from the equalities

*

t):sj’k (8%, 1) ds*,

L L Fov L 20D
s_-oj/‘tds -Of 5 rtds _0_[ = 'tds,
. Op(s, ) | Colsy 1) .

e= " + as

With the help of g the classical measures of momentum and of inertia
force per unit length are defined, respectively ov and — ov.

In a rod with structure there is the need to account also for a distributed
moment of inertia. On this matter different choices seem possible; here we
adopt the hypotheses which form the basis of the theory of three-dimensional
continua with affine structure (see, e.g., [6]).

A symmetric positive-definite tensor I, function of s, defines the Euler
inertia tensor per unit mass; I(s(s*, ), ?) is supposed to be related to the
inertia tensor I*(s*) in the reference placement through the equation of con-
servation of inertia

(4.8) I=GI*G”,
Derivation of this equation with respect to time gives
(4.9) I=2sym(IU?).

Correspondingly it is assumed that:

(i) The generalized moment of momentum per unit mass (with respect
to the origin) be given by the formula

(4.10) p®v+S, with S=IUr=GI*G?

(thus the term S is added to the usual measure).
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(ii) The total kinetic energy per unit mass be

(411) Yot + (IU7)- UF) = J(v° + (GI%)-6)

(again with the additibn of an ‘aplv)ropriate term to the classical measure).
(iii) The generalized momen’g”of inertia forces per unit _meps}s)?g;

(412) —(p® v + GI*GN)= — (pR v + 8 — GI*G)= — (pR v+ § — US).

Multiplying each of the quantities (4.10), (4.11), (4.12) by p one obtains here
the densities per unit length of the rod, densities which can be integrated over €
to obtain the corresponding totals.

5 = Equations of balance

Congider now any arc ¢ of ¥ with end-points 4, B; the balance of mo-
mentum for ¢ is expressed by the classical relation :

(5.1) {ofds + sy —s,=[ pv ds,

here: fis external force per unit mass and s is the resultant of internal forces

on any cross-section of the rod; in particular s,, s; are the values of 's on

the cross-sections through A4 and B. ‘ ‘
"The validity of (5.1) for any choice of ¢ implies the local relation .

os
(5.2) fﬁv 88 B =0.

The balance equation of generalized moment of momeéntum is modelled on
the corresponding equation for a three- dlmensmnal body with affine stlucture,
precisely it is expressed as follows -

¢

63)  jolL+p@f)ds+ pa® 51— p1®s,1+HB H,+ (20 o

—[o(S— US+ p® i’)ds,'

[

here aceount is taken of (4.12) and the following additional notation is used:
L, generalized moment of external forees per unit mass; H, generalized resul-
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tant moment of internal forces on any cross-section of the rod, in particular
H,, H;, values of H on the cross-sections through 4 and B; Z, generalized
moment of internal forces per unit length of e.

As is known, Z need not be zero, though the mutual character of internal
forces implies that

(5.4) skwZ=10.
Taking into account (5.2), eq. (5.3) can be reduced to

(5.5) folL—8S +US)ds +[t®@ s+ Z)ds + Hy,—H, = 0.

<

Local consequence of (5.5) is the relation

3 ocH
(5.6) oL—8S+US)+t@s+Z+ —=0.
The power of inertia forces acting on ¢ is given by

(B.7) = —[o(®-v L (§— US)-Ur)ds = — (} [ o(v* + S-Ur)ds)-,

<

i.e., it is the opposite of the time-derivative of the kinetic energy of ¢ (see (4.11)).
The power of external forces is given by

(5.8) 7l :_[Q(f'v + L-U?)ds 4 s vp— 8,04 -+ Hp- Uf,— H,- Ui .

In view of (5.2), (5.6) the sum of #') and =¥ is the opposite of the power 5™
of mutual internal forces
v aUr

(5.9) am = | (s-( P Ut) + H- K-Z-sym U)ds.

[

The latter expression and th» consequent specification of the power density
per unit length of ¥

ov oUr
(5.10) ﬂ(""):s-(—a-:g—Ut)+H' —%““Z‘Sme

are of particular relevance for the development of the theory. Even more
significant is the expression of the power density z*¢? per unit length of €*,

33
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when account is taken of formulae (4.3), (4.4)
(5.11) ¥ = (GTs)-e + (G HG)* F — MG ZG")-E .

This expression indicates already the convenience of the introduction of
Lagrangian components of forces and moments

(5.12) s*=GTs, H* = G'HG, Z# = JG1ZGT,
in terms of which z*™ becomes
(5.13) a*W = s¥* . 1 H¥.F— Z+E

s*, H*, Z* can be introduced also in the balance equations, which then take
the form

. . . a ES
(5.14) Q*GT(b——v)—-FTs*—f——;—s =0,

0*G YL — 8 4 US)G + (t* + e)® s* + Z*(1 4 2E)

oH*
w0

+ FH* — H*F +
Formula (5.13) suggests also the hypothesis, analytically attractive and phys-
ically significant, of the existence of a potential function ¢ of the variables e,
F and E such that

. dp 2S¢ - op . Op
- Jav(m)___.____:—_. . LI
(5.15) =% "2 *Tar FtE P
which implies the constitutive equations
P w_ (09 « op !
(5.16) st =z, H'=(z), Z*=—z, o
op o 1.0
e (1 2T — Y ol —_—_ g ald
(5.17) s=G 5o H G(aF) G, Z AGGEG'

Remark 1. The validity of the consequences (5.16), (5.17) of the exi-
stence of a potential is restricted by the proviso that no condition is imposed
upon the choice of e, F, E.
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If, on the confrary, constraints are present, some of those relations are
invalid, as we shall see in detail later; for instance, if the constraint quoted
in Remark 2 of Sect. 3 is present, then the first relation in both (5.16) and (5.17)
must be left out and s* becomes a reaction to the constraint.

Remark 2. Particularly important but very different in character is
the special case (which is considered here only marginally) when the material
properties and the data assure the inclusions

(5.18) LeSkw, S—USeSkw, HeSkwv.

Then (5.6) can be split into the two balance equations
- oh
(5.19) oe(L— 8§ — US) -+ txs-+ 55—:0, h=¢eH,

(5.20) Z=—3symtR s,

and the expressions (5.10), (5.11) of the power densities can be reduced to

T
o — s.(%_—(skw U)t)+ H- ?'ég"’

qHm = g% - (é + AG-(sym GG) t) 4+ H* -F7,

The expressions show that a different definition of characteristics of strain
would be appropriate.
The case

(5.22) L=06, S=0, HesSkw

is also frequently studied; then (5.19) becomes even simpler
oh
(5.23) txXsta-=0.

6 ~ Constraints

For most studies the results and formulae of the previous Sections are too
general; constraints are normally introduced to reflect certain physical assump-
tions and also to simplify the analysis.
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We examine here a few constraints, most commonly accepted, in order
of increasing severity and deduce first consequences of a geometric character.

The «real » rod. As declared at the outset, the word «rod » is used in the
previous Sections as an abbreviation for « one-dimensional continuum with
affine structure ». The usage is not wholly appropriate; normally more specific
properties are attributed to a rod. Actually, from now on, it will be assumed
that, in a rod, G has the property of transforming the unit vector t* into a
vector parallel to &, more precisely that the following constraint applies

(6.1) Ge* = It .

As a consequence (see (3.6) and Remark 2 in Sect. 3) e vanishes identically
and the strain is characterized by E and F alone; furthermore, whereas the
constraint does not restrict the choice of E and F, it requires e = 0. Con-
dition (6.1) suggests the convenience of adopting At as one of the directors;
from now on we accept the identification

(6.2) dy = It

which obviously implies (6.1).

The bar of engineering theories. In addition to (6.2) one assumes that G
transforms all vectors in the plane d;), dg, rigidly. In other words, there
exists an orthogonal tensor Q (with detQ = 1) such that (see (3.3))

(6.3) G= 2§R Qd,® d*® 4 2@ d*,
or '

(6.4) G=QA+g®d"),
with

(6.5) g=2QJTt— t* and det(1+4 g® d*®) = detG > 0.
As a consequence

(6.6) E=sym ((g + g &M@ d*(m)
and, of course,

(8.7) E=sym((g + (g-g) d*)® d*) .
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Remark 1. The expression (6.6) specifies for E a form of the type

(6.8) E = sym (¢® d*®)

with ¢ =g+ § (g)2d*®.

It is relevant to remark that, given ¢, g can be determined uniguely; in
fact the components of ¢ and g orthogonal to d*® coincide, whereas for the
components (say, ¢s, g;) along d*® one has

|d*® g7 + 2g5 + |d*®| (e — ¢}) — 2¢; = 0;

but the discriminant of this equation is equal to (det G)?, and the alternative
choice for the root is again decided by the condition detG > 0.

A necessary and sufficient condition for E to be of the form (6.8) is that
the covariant components Hys = d(R) Ed(s) vanish for B, S =1, 2

(6.9) Brs=0 (B, 8=1,2).

The first part of the statement is an immediate corollary of the properties
of reciprocal directors. To prove that (6.9) implies (6.8) with an appropriate
choice of ¢ it is sufficient to observe that (6.8) follows from the general formula

3
E = Zn,s Brs d*(&)@ d*()
1

when one puts c¢ == 2(H,d*® + F,,d*®),

Remark 2. As the deformation transforms d, and d (actually their
whole plane) rigidly, no restriction would be implied by the assumption that
dyy and dy are two orthogonal wnit vectors or equivalently that dy,, dg, A-1d®
s & triad of orthogonal unit vectors. This assumption leads to a significant sim-
plification of formulae in concrete problems and also helps in some of our develop-
ments.

The other strain characteristic has now the expression

g® dx® Q

8
(6.10) F= (1“m )(QT 1+ g® d*)

di 3)
+ 28 @awo g0 127,
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Notice that 1+ g-d*® is different from zero because its vanishing would
imply that
t .Qd*(a) = () y

i.e. that ¢ is in the plane of d, and d which is explicitly forbidden by the
condition detG # 0 (Qd*® is in the direction of the normal to the plane of
dy) and dpy). .

The expression of F is more complex and we need not write it out here.
Suffice it to say that F is linear in g, (3g/ds*), (Q7(0Q[ds*))" whereas, as
appears in (6.7), E is linear in g only. On the whole 9 parameters are involved
rather than 15 in the specification of E and F; actually only the choice of E
is restricted, whereas F' can assume locally any value through an appropriate
local choice of g, (0g/ds*), (Q7(0Q[os*))".

The elastice. In addition to (6.2) and (6.3) one assumes that
(6.11) t = Qt*

Thus the triad of vectors dy,, dw, t = A~1d is subject to rigid displa-
cements only during the deformation; no restriction ensues if we assume that
they form an orthogonal triad. Such assumption, together with the assumption
within Remark 2 above, is accepted here to simplify formulae; in particular
d® is brought to coincide with A-'¢ and d*® with t*; G, E, E, F become
respectively

(6.12) G =001+ t*®t*), E=5}(A—1)t:® t¥,
(6.13) E = 214e5® v,

BQ 00 v g : ‘o
F= (1— = E*®) t¥) (QT (L4 6t*® t*) + e t*® t* 4 20x* sym (£* Q) n*)),
(6.14)
F=(1— é t*@t*) QT%—’_ (14662 Q%)+ 11“ g-; QU Ot 5? *®) n¥.

‘When n and b are uniquely defined, one can introduce an angle ¢ such that

(6.15) dyy= ncosy —bsiny, di = bceosy + nsiny,
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and make use of the formulae

dd, d
(6.16), ds(‘l) = (T + ”c% ) d) — % cosyt,
dd( ) dk .
(6.16), g = (v+ g, ) dw —#sinke,
dd, di
(6.16), d:) =% t - dun, and
(6.17) w:—('c—l—gz)t-}—xb.
) "ds
With the additional notation
(6.18) d = n* cos (y — y*) + b*sin (y — %) ,
(6.18) g=3(txt+nxn+bxb),

one can give an alternative expression of F

1dé . "
(6.19) F=7 5t @t —x(t*Q d— 2d® t¥)

b (a2

PE ’

and a compact expression of U
d .
(6.20) U=,t®t—elg+71).

Even with the new notation, (6.19) is not a convenient expression to work

with. In fact, in the study of elastica, the use of the characteristics of strain

mentioned in Remark 3 of Section 3 is preferred; they arve null except for
B

. ¥ oy
(6.21), Ju=—Jn=v'+T—(r+2L),

(6.21), 15 = — gy = x¥ cosp* — yx cOs Y,

‘i . o
(6.21);  Jw=—dJu=u"sinyT—yprsinyg, Jyp=—15.
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Under the present circumstances F and J are related as follows
J= A1+ (22 —1)t*® t¥)(F -+ W*) — W*.
" The inextensible elastica. It is characterized by the further constraint
(6.22) A=1 or 6=10.

Then E vanishes identically and F is a skew tensor. Obvious simplifications
ensue in the formulae; in particular F coincides with J.

7 - Pure balance equations for the constrained cases

We accept here a dynamic notion of frictionless constraint in the form
introduced in a general context by Gurtin and Podio-Guidugli [5] and specified
for affine bodies in [3],. In brief, the absence of friction is bound to the pro-
perty of vanishing power of reaction stresses (s, Z, H) for all virtual kinematic
fields; in addition the active portions of each one the stress field (s, Z, H) are
supposed to belong to the subspaces orthogonal to those spanned respectively
in the space of vectors, of second order symmetric tensor, of second order
tensor by (5, Z, H). Pure dynamic equations ave those which involve 5, Z, H
only (and not at all s, Z, H).

The «real » rod. s is a reaction due to the constraint (i.e., it has no active
component) and is given by the formula

- - oHT
(1.1) s=—(o(L—S+USF+Z+ ——)¢,

or alternatively by

- . oH
(1.2) s=—201—}t® t)(osym(L—S + US)+Z + Sym == ),
while H and Z must be specified by constitutive equations (such as (5.17),
(5.17);). The pure (i.e., reaction-free) equations of balance are

(o(L— S 4 US)T + Z—{—%I%—)nz(),
(7.3) ‘
oH~
0s

(o(L—S+UST+Z4——)b=0,

2 : Hr
M) ef—@ 2 (el —$+ USyE+ 2+ ) =0.
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The bar of engineering theories. The tensor
(7.5) Z# = ?m{ Z*dez‘u)® d&’)

formed with the contravariant components of Z* has reactive character;
Z* can be split into the sum

(7.6) Zx = Z* 4 2sym (Z*5dy, + 272 d, + 1 259 d,)® diy) or
(7.7 Z=17-+2sym (Z@dy+ Z2dy + 2% dy)® dy) ,

which implies

Zdg=z—1

ST

3

SeZdp .

1

The reactive components of Z can be determined through the formulae
(o(L— 8 + US)T+Z+?—I£)d<R>—0
0 os - (B=1,2),

whereas the only pure relation is

2, 1 - . oH?
olf—a)— = ( ;7w (oL — S+ US)"+ 5

__E_)dm_,_z))-_:().

Remark. These formulae are still cumbersome. Rasier developments
follow from the acceptance (which is general and usually tacit) of the additional
hypotheses (5.18) or even (5.22). We do not intend to pursue the matter here;
to the Remark of Section 5 we add only the observation that, if hypotheses
(6.2), (6.4) are also assumed, (5.21) changes into

aUr
os '

) = ,%_(1 + d*(a) .g)—-l((d*(a) .t) QT + QT t@ d*(if)) s .g _}__ H.

which may be taken as a new point of departure for a discussion of the spe-
cial case.

The inextensible elastica. Because E vanishes, Z becomes a reaction due
to the constraint and Z vanishes. F is skew; hence sym H* has reactive
character, H* is skew and so is H.
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Together with h* = efl*, put j= leJ, then H*.J* = h*(0j/ot), so that,
when a potential exists fi* = dp/dj.

In classical analyses the pure equation is not used generally; a mixed
equation of the form (5.19) is preferred, where b= eH takes the place of A.
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