RADU ROSCA (*)

Para-Kählerian manifolds having the self-orthogonal Killing property (**)

Let $M(\Omega, g, \mathcal{U})$ be a para-Kählerian manifold, that is a neutral C^{∞} pseudo-Riemannian manifold having a Kählerian structure [5].

The structure tensors are: a canonical symplectic form Ω , a para-Hermitian metric tensor g, exchangeable with Ω , the para-complex operator $\mathscr{U}(\mathscr{U}^2=+1)$. If $T_p(M)$ is the tangent space at $p \in M$ to M, one has the decomposition $T_p(M) = S_p(M) \oplus S_p^*(M)$. If dim M = 2n, $S_p(M)$ and $S_p^*(M)$ are two self-orthogonal (abr. s.o.) vectorial sub-spaces of dimension n and the pair $(S_p(M), S_p^*(M))$ defines an involutive automorphism.

Let $\mathcal{R}(M)$ be the bundle of real Witt frames over M and $\mathcal{R} = \{h_A\}$ $(1 \leqslant A, B, C \leqslant 2n)$, where h_A are null real vector fields, an element of $\mathcal{R}(M)$. If in the neighborhood of each point $p \in M$ there exists an \mathcal{R} such that the vector fields $h_a \in S_p(M)$ $(a = 1, ..., n; a^* = a + n)$ are Killing vector fields we say that M has the s.o. Killing property. In this case it is proved that the s.o. vectorial sub space $S_p^*(M) = \{h_{a^*}\}$ is auto-parallel and the whole manifold M has the divergence property [1]. Moreover:

- (i) any vector field $X^* \in S_p^*(M)$ is an *isovector* of the Pfaffian system defined by the covectors corresponding to the dual of $S_p(M)$;
- (ii) if $X \in S_p(M)$ is any Killing vector field, then the following two properties are equivalent
 - (a) X is a local Hamiltonian of Ω_j ,
 - (b) X is a parallel vector field.

^(*) Indirizzo: Faculté des Sciences et Techniques, 30-38 Sfax, Rèp. Tunisienne.

^(**) Ricevuto: 5-V-1980.

Next the following proper and improper immersions in M are considered:

- (i) The proper immersion $x: M_I \to M$ where M_I is an *invariant* submanifold of M. If the codimension of M_I is 2r, then x is of geodesic index r.
- (ii) The proper immersion $x: M_A \to M$ where M_A is an anti-invariant manifold of dimension n; then M_A is always minimal.
- (iii) The improper immersion $x \colon M_c \to M$ where M_c is a co-isotropic hypersurface whose normal h_a is in the s.o. Killing sub-space $S_p(M)$; this immersion is geodesic. Moreover the normal covector ω^a defines with the restriction $\Omega|_{M_c}$ a semi-cosymplectic structure.
- (iv) The improper immersion $x: M_L \to M$ where M_L is a mixed Lagrangian sub-manifold of M; this immersion is totally geodesic.
- 1 Let $M(\Omega, g, \mathscr{U})$ be a para-Kählerian manifold [5] of dimension 2n. Let $\mathscr{R}(M)$ be the bundle of real Witt frames over M and let $\mathscr{R} \in \mathscr{R}(M)$ be an element of $\mathscr{R}(M)$. Denote by $\{h_A\}$ $(1 \leqslant A, B, C \leqslant 2n)$ the null real vectorial basis of \mathscr{R} and by $\{\omega^A\}$ its dual basis. If $T_p(M)$ is the tangent space at $p \in M$ to M one has the decomposition of Libermann [5]

$$(1.1) T_{\mathfrak{p}}(M) = S_{\mathfrak{p}}(M) \oplus S_{\mathfrak{p}}^{*}(M).$$

In (1.1) $S_p(M)$ and $S_p^*(M)$ are two self-orthogonal [5] (abr s.o.) sub-spaces defined by h_a ($1 \le a \le n$) and h_{a^*} ($a^* = a + n$) respectively. $\mathscr U$ is the paracomplex operator [5] and the pair (S_p, S_p^*) defines an involutive automorphism such that

The line element dp on R(M) is

$$(1.3) dp = \omega^{A} \oplus h_{A}$$

and \mathscr{R} being normed one has $\langle h_a, h_b \rangle = \delta_{ab}$. The metric tensor g of M has the para-Hermitian form

$$(1.4) g = 2\Sigma_a \omega^a \otimes \omega^{a^*}$$

and it is exchangeable with the symplectic form

$$\Omega = \Sigma_a \omega^a \wedge \omega^{a^*}.$$

If $\theta_B^A = l_{BC}^A \omega^c$ ($l_{BC}^A \in C^\infty(M)$) are the connection forms on $\mathcal{R}(M)$ and ∇ is the covariant derivation operator defined by g, the structure equations (F. Cartan) in compact notation are:

$$(1.6) \nabla h = \theta \otimes h ;$$

(1.7)
$$d \wedge \omega = -\theta \wedge \omega$$
, $d \wedge :$ exterior differentiation;

(1.8)
$$d \wedge \theta = -\theta \wedge \theta + \Theta$$
, Θ : curvature 2-forms.

The para-Hermitian metric of M gives, making use of (1.6)

$$\theta_a^b + \theta_{b*}^{a*} = 0$$

and the Kählerian structure of M implies that the connection matrix \mathcal{M}_{θ} is a Chern-Libermann matrix, that is

$$\mathcal{M}_{\theta} = \begin{pmatrix} \theta_b^a & 0 \\ 0 & \theta_{b*}^{a*} \end{pmatrix}.$$

2 - According to D'Atri and Nickerson [1] we give the following

Definition. We say that a manifold M has the s.o. Killing property if in the neighbourhood of each point $p \in M$ there exists a frame $\mathcal{R}(S_p, S_p^*)$ such that the null vectors of one or the s.o. sub spaces $S_p(M)$ or $S_p^*(M)$ are Killing vector fields. Suppose that the vector fields $h_a \in S_p(M)$ are Killing vector fields. This condition is expressed in intrinsic manner by

(2.1)
$$\langle \nabla_z h_a, Z' \rangle + \langle \nabla_{z'} h_a, Z \rangle = 0$$
, $\forall Z, Z' \in T_n(M)$.

Taking account of the metric (1.4) and making use of (1.6), equations (2.1) give

$$(2.2) l_{ab}^{b} = 0 , l_{cb}^{a} + l_{ca}^{b} = 0 , l_{bc}^{a*} = 0 , \forall C$$

and this implies, as it is known, div $h_a=0$. But if $\eta=\omega^1\wedge...\wedge\omega^n\wedge\omega^{n+1}\wedge...\wedge\omega^{2n}$ is the volume element on M, one has $\mathscr{L}_{ha}\eta=(\operatorname{div} h_a)\eta$ ($\mathscr{L}_{\mathcal{X}}$: Lie derivative in the direction of the vector field $X\in T(M)$). With the help of (1.7) and (1.10) one finds

(2.3)
$$\operatorname{div} h_{a*} = \sum_{b} l_{bb*}^{a},$$

and by (2.2) one has

$$\operatorname{div} h_{a^*} = 0 .$$

So referring to [1] one may say that if a para-Kählerian manifold M has the s.o. Killing property then it has the *divergence property*. Moreover, by (1.10) and (2.2) one easily gets

(2.5)
$$\nabla_{ha^*} h_{b^*} = 0 \quad \forall a^*, b^* \in \{n+1, \dots, 2n\},$$

and this shows that S_p^* is auto-parallel.

In the following we shall call $S_p(M)$ and $S_p^*(M)$ the Killing s.o. space and the auto-parallel s.o. space respectively.

We shall now point out some properties of the Lie Algebra defined by the real vector space $X^* \in S_2^*$. By means of (1.7) and (2.2) one finds

(2.6)
$$\{ \forall X^* \in S_p^* ; \quad \Sigma : \omega^b = 0 ; \quad b = 1, ..., n ; \quad \mathscr{L}_{X^*} \omega^b = 0 \} .$$

The above equations prove that any vector field $X^* \in \cup S_p^*$ is an isovector of the Pfaffian system Σ (one may also say that X^* are local invariant sections of ω^b [6]).

Putting $\nabla_{h_a} h_a = -A_{h_a} h_a$ [3] one deduces from (1.6), (2.2) and (1.5)

(2.7)
$$\Omega(A_{h_a}h_a, A_{h_b}h_b) = 0$$
.

Hence the vector fields $A_{h_a}h_a$ are in *involution* with respect to the symplectic form Ω .

Let now

(2.8)
$$X = \sum_{a} t^{a} h_{a} \in S_{p}(M), \quad t^{a} \in C^{\infty}(M),$$

be any vector field of the s.o. Killing vector space $S_{\nu}(M)$.

Suppose that X is a Killing vector field on M. Taking account of (2.2) we get

(2.9)
$$t_{;b}^{a} + t_{;a}^{b} = 0 , \quad t_{;b*}^{a} = 0 ,$$

where; indicates the Pfaffian derivative. On the other hand, taking account of (2.2), equations (1.7) take for the covectors ω^{a^*} of the dual of $S_p^*(M)$ the following form

(2.10)
$$d \wedge \omega^{a^*} = \sum_{b} \left(\sum_{c} l^b_{ac} \omega^c \right) \wedge \omega^{b^*} \quad (c \neq b) .$$

Let $\mu: X \to i_X \Omega$ (i_X interior product) be the bundle isomorphism defined by Ω . Then if $X \in S_p(M)$ is the Killing vector field defined by (2.8), the necessary and sufficient condition for X to be a local Hamiltonian of Ω is

$$(2.11) d \wedge i_x \Omega = 0.$$

Since $X \in S_p(M)$, equation (2.11) gives with the help of (2.9) and (2.10)

(2.12)
$$t_{,b}^{a} + \sum_{c} t^{c} l_{cb}^{a} = 0 \quad (b \neq a) .$$

Consider now the covariant derivative ∇X of X. One has, as it is known, $\nabla X = \nabla (t^a h_a) = \mathrm{d} t^a \otimes h_a + t^a \nabla h_a$, and referring to (2.12) one finds after a short calculation

$$(2.13) d \wedge i_X \Omega = 0 \Leftrightarrow \nabla X = 0.$$

Theorem. Let $M(\Omega, g, \mathcal{U})$ be a para-Kählerian manifold having the s.o. Killing property and let $S_p(M)$ and $S_p^*(M)$ be the two s.o. components of the tangent space $T_p(M)$. Then:

- (i) M has the divergence property;
- (ii) if $S_p(M)$ is the Killing s.o. vector space then its complementary $S_p^*(M)$ is auto parallel;
- (iii) any vector field $X^* \in S_p^*(M)$ is an isovector of the Pfaffian system defined by the covectors corresponding to $S_p(M)$;
- (iv) if $X \in S_p(M)$ is any Killing vector field, then the following two properties are equivalent: (a) X is a local Hamiltonian of the symplectic structure $S_p(n, R)$ defined by Ω ; (b) X is a parallel vector field.
- **3** Let $x: M_I \to M$ be the immersion of any invariant [4], [7]₁ submanifold M_I of $M(\mathcal{U}T_{x(p)}(M_I)) = T_{x(p)}(M_I)$.

If M is any para-Kählerian manifold we have proved [9] that M_I is minimal. Suppose that M_I is defined by the Pfaffian system

(3.1)
$$\omega^r = 0$$
, $\omega^{r^*} = 0$ $(r = 1, ..., p; r^* = r + n)$.

(we shall denote by the same letters the elements induced by x). Referring to (2.2), the exterior differentiation of (3.1), quickly gives

(3.2)
$$l_{rj}^{i} = 0 \quad (i \neq j) \quad (i, j = p + 1, ..., n; i^* = i + n).$$

Let then

$$\begin{array}{ccc} l_{r} = -\langle \mathrm{d}x(p), \, \nabla h_{r} \rangle &= - \varSigma \omega^{i*} \otimes \theta_{r}^{i} \,, \\ \\ l_{**} = -\langle \mathrm{d}x(p), \, \nabla h_{**} \rangle &= & \varSigma \omega^{i} \, \otimes \theta_{i}^{r} \,, \end{array}$$

be the second quadratic forms associated with x. It is readily shown by (3.2) that all quadratic forms l_r vanish; consequently the normal sections $h_r \in S_r(M)$ are geodesic. Since $l_{r*} \neq 0$, we shall say that the immersion $x: M_I \to M$ is of geodesic index r.

Consider now an antivariant submanifold $M_A \subset M$ of maximal dimension n. According to the general definition [11], [7]₂ one has $\mathscr{U}T_{x(p)}(M_A) = T_{x(p)}(M_A)$, $(T_{x(p)}(M_A): \text{normal space to } M_A \text{ at } x(p) \in M_A)$. So M_A is defined by the Pfaffian system

$$\omega^a = \omega^{a^*}.$$

Making use of (1.7) we derive from (3.1)

$$\sum_{a} \omega^{a} \wedge \theta^{a}_{b} + \omega^{a} \wedge \theta^{b}_{a} = 0.$$

If e_a is the vectorial basis of $T_{x(p)}(M_A)$, then the mean curvature vectorial from Θ associated with x is as it is known

(3.6)
$$\Theta = \Sigma (-1)^{a-1} \omega^1 \wedge ... \wedge \hat{\omega}^a \wedge ... \wedge \omega^n \otimes e_a$$

(\wedge indicates the missing term; we denote the elements induced by x with the same letters). If $\eta = \omega^1 \wedge ... \wedge \omega^n$ is the volume element of M, then

$$d \wedge \Theta = nH \otimes \eta ,$$

where H is the mean curvature vector associated with x. Taking the exterior differentiation of (3.6) and making use of (3.7) and (1.7), one obtains

(3.8)
$$nH = \sum_{a} \left(\sum_{b} l_{bb}^{a} + l_{ab}^{b} \right) n_{a},$$

where n_a are the normal sections on M_A . But taking account of (2.2) we get from (3.2) $l_{bb}^a = 0$, and since by (2.2) one has $l_{ab}^b = 0$ it follows H = 0. Hence M_A is a *minimal* submanifold of M.

In the third place consider the improper immersion $x: M_c \to M$, where M_c a hypersurface defined by

$$\omega^{a^*} = 0.$$

In this case one easily sees that $h_a \subset T_{x(p)}(M_c) \cap T_{x(p)}(M_c)$.

Therefore, the tangent vector field h_a being in the normal space $T_{x(p)}(M_c)$, the hypersurface M_c is called *co-isotropic* [8] (M_a may be also considered as a CR-manifold [7],).

Exterior differentiation of (3.9) gives, taking account of (2.2),

$$l_{ac}^b = 0 , \quad b \neq a .$$

But h_a being a normal section, the second quadratic form associated with x is

$$(3.11) l_a = \langle \mathrm{d}p, \nabla h_a \rangle = \Sigma \theta_a^b \otimes \omega^{b^*}, \quad b \neq a.$$

So by (3.10) it follows $l_a = 0$ and this shows that the improper immersion $x: M_C \to M$ is geodesic.

Further since the induced forms $\Omega|_{M_{\sigma}}$ are

(3.12)
$$\Omega|_{M_G} = \omega^1 \wedge \omega^{1*} + \dots + \widehat{\omega^a \wedge \omega^a}^* + \dots + \omega^n \wedge \omega^{n*}$$

(\wedge : missing terms), one easily sees that $\Omega|_{M_c}$ is of constant class 2n-2. On the other hand after a straight forward calculation one finds

$$(3.13) d \wedge \omega^a = \sum_{b < c} (l^a_{bc} - l^a_{cb}) \omega^b \wedge \omega^c (b, c \neq a) .$$

One derives

(3.14)
$$\omega^a \wedge (d \wedge \omega^a) \neq 0$$
, $(\Lambda(d \wedge \omega^a))^n = 0$,

and the above relations prove that ω^a is of class 3 [2]. Obviously one has $(A\Omega|_{M_c})^{n-1} \wedge \omega^a \neq 0$; hence $\Omega|_{M_c}$ and ω^a define an almost cosymplectic structure (i.e. in the sense of G-structures, $\{1 \times S_p(n-1, \mathbf{R})\}$).

Definition. Let $1 \times S_p(n, R)$ be an almost cosymplectic structure defined by a 2-form Ω and a 1-form ω . We say that the pair (Ω, ω) defines a semi-

cosymplectic structure iff: (i) Ω is closed; (ii) ω is of odd class; (iii) the canonical vector field h of $\{1 \times S_p(n, \mathbf{R})\}$ is an infinitesimal automorphism of both Ω and ω .

Since in the case under discussion the canonical vector field associated with $1 \times S_p(n-1, \mathbf{R})$ is h_a , one readily finds by (3.12) and (3.14)

$$(3.15) \mathscr{L}_{h_{\sigma}}\Omega|_{M_{\sigma}}=0 , \mathscr{L}_{h_{\sigma}}\omega^{a}=0 .$$

On the other hand in our case $h_a \in S_p(M)$ is a Killing vector field.

So according to (3.15) we shall say that the triple $(\Omega|_{M_{\mathcal{C}}}\omega^a, h_a)$ defines a K-semi cosymplectic structure. Finally we shall consider the improper immersion $x \colon M_L \to M$, where M_L is a Lagrangian submanifold [2] of M (if $T_{x(p)}(M_L)$ is the tangent space at $x(p) \in M_L$, then $T_{x(p)}(M_L) = T_{x(p)}^+(M_L)$).

Clearly the s.o. subspaces $S_p(M)$ and $S_p^*(M)$ are Lagrangian planes (a Lagrangian plane L is by definition n-dimensional and such that $L = L^{\perp}$, $\Omega|_{L} = 0$ [2]).

We agree to call $S_p(M)$ and $S_p^*(M)$ the principal Lagrangian planes associated with a para-Hermitian metric. Any other Lagrangian plane will be denominated a mixed Lagrangian plane (the corresponding tangent manifold is then a mixed Lagrangian submanifold). Let then $x \colon M_L \to M$ be the improper immersion of a mixed Lagrangian submanifold M_L in M. Assume that M_L is defined by

(3.16)
$$\omega^r = 0$$
, $\omega^{s^*} = 0$ $(s^* \neq r^*)$,

with $r=1,\ldots,p$; $s=p+1,\ldots,n$. Denote by $\Sigma_r(M)=\{h_i;\ i\neq r\}$ (resp. $\Sigma_p^*(M)=\{h_i^*;\ j^*\neq s^*\}$) the complementary sub-space of $\{h_r\}$ in $S_r(M)$ (resp. of $\{h_{i*}\}$ in $S_r(M)$). The line element $\mathrm{d}x(p)$ of M_L is expressed by

(3.17)
$$dx(p) = \omega^{i} \otimes h_{i} + \omega^{j*} \otimes h_{j*}.$$

Then since by definition h_i and h_{i*} are normal sections, one finds by (1.6)

$$(3.18) l_i = \sum_j \theta_i^j \otimes \omega^{j*}, (3.19) l_{j*} = -\sum_i \theta_i^j \otimes \omega^i.$$

Next taking the exterior differentiation of (3.16) one gets after a straightforward calculation $\theta_i^j = 0$. Consequently the improper immersion x is totally geodesic.

Theorem. Let $M(\Omega, g, \mathcal{U})$ be a para-Kählerian manifold having the s.o. Killing property. One has the fallowing proper and improper immersions in M:

- (i) The proper immersion $x: M_I \to M$, where M_I is an invariant submanifold of M. In this case all normal sections of the s.o. Killing sub-space $S_p(M)$ are geodesic and if 2r is the codimension of M_I , the immersion x is of geodesic index r.
- (ii) The proper immersion $x: M_A \to M$, where M_A is an anti-invariant submanifold of dimension n. This immersion is always minimal.
- (iii) The improper immersion $x: M_c \to M$, where M_c is a co-isotropic hypersurface whose normal h_a is in the s.o. Killing sub-space $S_p(M)$. This immersion is geodesic.

Moreover the normal covector ω^a defines, with the restriction on M_c of Ω , a K-semicosymplectic structure.

(iv) The improper immersion $x: M_L \to M$ where M_L is a mixed Lagrangian submanifold of M. This immersion is totally geodesic.

References

- [1] J. E. D'Atri and H. K. Nickerson, The existence of special orthonormal frames, J. Diff. Geom. 2 (1968).
- [2] C. Godbillon, Géométrie des systèmes dynamiques, Dunod, Paris 1970.
- [3] S. Kobayashi and K. Nomizu, Foundations of differential Geometry, vol. I, J. Wiley, N. Y. 1969.
- [4] M. Kon, Invariant submanifolds of normal contract metric manifolds, Ködai Math. Sem. Rep. 25 (1973), 330-336.
- [5] P. LIBERMANN, Sur le problème d'équivalence de certaines structures infinitésimales, Ann. Mat. Pura Appl. 36 (1954), 27-120.
- [6] A. LICHNEROWICZ, Géométrie des groups de transformation, Dunod, Paris 1958.
- [7] R. Rosca: [•]₁ Sous-variétés pseudo-minimales et minimales d'une variété pseudoriemanienne structurés par une connexion spin-euclidienne, C. R. Acad.
 Sci. Paris, Sér. A, **290** (1980), 331-333; [•]₂ Sous-variétés antiinvariantes
 d'une variété para-Kählerienne structurée par une connexion géodésique,
 C. R. Acad. Sci. Paris Sèr. A **287** (1978), 539-541.
- [8] J. M. Souriau, Structure des systèmes dynamiques, Dunod, Paris 1970.
- [9] GH. VRANCEANU and R. ROSCA. Introduction in relativity and pseudo-riemannian geometry, Ed. Acad. Rep. Sci. Rom., Bucarest 1976.
- [10] A. Weinstein, Lectures on symplectic manifols, Amer. Math. Soc. 1977.

Résumé

Soit $M(\Omega, g, \mathcal{X})$ une varièté para-Kählerienne et soient $S_p(M)$ et $S_p^*(M)$ les deux sous espaces self-orthogonaux (abr. s.o.) de la decomposition canonique du l'espace tangent $T_p(M) = S_p(M) \oplus S_p^*(M)$.

Si les champs vectoriels (isotropes) de la base de l'un de ces sous-espaces sont des champs de Killing, on dit que M possède la propriété de Killing self-orthogonale. Dans ce cas toute la variété M possède la propriété de la divergence et différentes propriétés ayant trait à l'algèbre de Lie sur M sont étudiées. On considère ensuite différentes types d'immersions propres et impropres dans M.

* * *