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U. BRUZZO ana BE. PAGANTI (%)

A note on the initial-value problem

in the linearized theory of general relativity (**)

1 - Preliminaries

In a previous paper [3] we discussed the application of ADM method [2]
.to the analysis of the dynamics of the gravitational field in the linear approx-
imation. The results obtained in [3] are now used in order to write down the
field equations in Hamiltonian form and state the initial-value problem.

In the space-time manifold V, (initially carrying a pseudo-euclidean metric)
we introduce a family 2" od spatial parallel hyperplanes ¢ [3]. Let B = {z'}
be a pseudo-cartesian co-ordinate system adapted to X [4], and let {0, da’}
be the corresponding basis of the tensor algebra over V,; then the pseudo-
euclidean fundamental form is

D, = Ni; do’ @ dad, foo =—1, s =0, Noap = 50‘13 * .

In the linearized theory of gravitation, the space-time is supposed to carry
a fundamental form

D = (ny; + hyy) do' @ dad, thi;| <1,

(*) Indirizzo: Istituto di Matematica, Universitd, Via L. B. Alberti 4, 16132
Genova, Italy.

(**) Ricevuto: 21-11-1980.

(*) Latin indices run from 0 to 3, greek ones from 1 to 3; Einstein summation con-
vention is used throughout. Tensor indices are raised and lowered using the flat-space
metrie.
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the perturbation %,; being a solution of the linearized Rinstein equations.
The spatial resolution of @ relative to the family of hyperplanes X' gives rise
to a spatial fundamental form [3]

= (Oap -+ Oap) dz* @ da?, [0as] <1,
to a spatial vector field N#0, and to a scalar field &, with the identifications

(1) ) . -NN "—-—" hO/{ 3 .Z\T ‘: 1 — ‘g): h(]() .

The Einstein equations may be 1c1enuﬁed mth the Hamllton equatlons
associated with the Hamiltonian

H = — j da(v[NR*l + 2:N—,lt avnuv + (_%_50#)0””_ 0“5) R;é '+‘ .R*?'"“‘ ‘12‘7I2 —{‘“ ﬂaﬁﬂaﬁ] ’
"

where the variables n*# are the momenta conjugate to 0.s, while the quantities
R:;, R*1 R*: are defined according to the equations [3]

R R I ]
B =) 1S U0 me=0wR,
T1'16 resulting equations may be written .
(2a) D00p = Sag Tty — 200 -+ 0a Ng 4 05 N
(2b) | aom.gvz — R:} + %60‘/31?,*1 — O 8&\7 ~+ Gap O uN )
(3) 8,;7#” =0, R¥1 =0 . |

Eqgs. (2) arve true dynamical equations for the variables 0.5, %8, whilst eqs. (3)
express four constraints among the variables themselves, essentially equi-
valent to the linearized version of the equations G, =0.

2 - Gauge conditions and initial-value problem

Since egs. (2) do not involve the time derivatives of N, N« the time evol-
ution of these fields is not fixed by the theory, but may be chosen arbitrarily [7];
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on the other hand, the time evolution of the remaining variables Oxs, 7% is
subordinate to this choice, so that the quantities N, N* play the role of gaunge
fields. As it is well known [2], the occurrence of such fields is strietly related
to the invariance of the theory under arbitrary co-ordinate transformations.

The freedom in the choice of N, N# enables one to impose four supplementary
conditions among the dynamical variables. These four gauge conditions,
together with the four constraint equations, constitute a set of eight relations
linking the fields N, N# on one hand, to the fields as, 7*# on the other hand.
In this way, fixing explicitly the fields N, N#, we obtain eight equations which,
at least formally, allow to express eight of the components fus, n%# in terms
of the remaining four.

Tle problem is then to decide whether some choices of the gauge conditions
are more convenient than others; as it will be seen, in this respect the Hilbert
gauge [5], completed with York’s decomposition of symmetric tensors of rank
two [8], plays a distinguished role, as it gives rise to a complete decoupling
of the eight equations mentioned above.

“In ‘three-dimensional notation, the Hilbert condition reads

(4a) . : Co N - 0p NB= 10,08,

(4b) CoNo 4 0a N = Ou(fix — $08,08) .
Eqs. (4), together with the constraints (3)

(Ha,b) R¥1 =0, Cpmtit* = 0,

provide eight relations among the twelve variables 0xs, 7%/, in agreement with
the fact that only four of these variables are to be related to the true degrees
of freedom of the field.

Following York, let us now introduce the decomposition

(6) Oaﬁ=6§§+ 0ap + aﬂ‘fa"—%éaﬂauf" +%'(Sc\'ﬁ0 ’
where ( = 0#,, the functions &; are solutions of the equation
(7 aﬁ(aafﬁ -+ aﬂ‘sa—‘%éaﬂaﬂfu) = 8,3(9%—~=§5”a0) y

and 67 is defined by eq. (6) itself. It turns out that 0% is traceless and trans-
verse (divergenceless), and that the longitudinal ferm

(8) 0up -+ Opba— % 00p 0ubH £2 O34

is traceless. This decomposition is covariant, unique and orthogonal [8].
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A first insight into the physical significance of this decomposition is given
by the following fact: let 0,5 be a spatial perturbation satisfying the con-
straint (5a); then 075 = 0 if and only if fup = Oayps + Opys, i.e. if and only
if Oap is the spatial projection of a Weyl solution [1]. This implies that 0% is
a gauge-independent quantity; we may therefore expect 6§§ to obey some
sort of gauge-independent dynamical equation. As we shall see, this is indeed
the case.

In a similar way we decompose 78
TP = qTh - 0% ph |- By — 20460, + L%y .

Taking into account eq. (7), the analogous relation for the functions ph, and
the equation

(93’) It == 806_28;1N”,

which follows at once from eq. (2a), the eight eqs. (4), (5) become a set of equa-
tions for the eight functions 0, &, =, yf, thus allowing to express them in
terms the fields N, N#, and, in principle, also of 07% and =S, Setting for
simplicity Dgy = 0p» 0, 0% + % 050», €q. (7), and the analogous relation for P
may be written more briefly

(gb) Dﬁy Vo= au(ﬂ” - %‘6”/36) P}
(96) .D[jp ’(/)v == av(ﬂvﬂ* %(5"p7z) .
Substituting eq. (4a) into (9a), eq. (4b) into (9b) and eq. (5b) into (9¢), we
obtain
(10) Dpy&? = 0pN 4 3, Np + £ 040 ,
7‘522801\7, Dﬁ,,zp"=-—»§-85n=—-§~aoagN.
AISO, by eq. (53}), 0= .R*l = aﬂ a“ﬁ -— au aﬁguﬁ = %‘ au 8”6 —_ aﬂ.Dﬂvfﬂ. Sllbstltu-

ting eq. (10) to eliminate the last term, we have 9, 9#0=2(0, O -3, 0, N¢).
To sum up, we have obtained the following set of equations

(11a) 7w=20,N,
(11b) V2§ = 2(V2N 4- 0,0, Nu),
(11e) Dy’ = — 30,05 N,

(11d) Dpp&r = 3p N + 0, N -+ 2050 .
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A remarkable feature of eqs. (11) is that they do not involve the T'T terms
of Oa5, m*8. This makes it very simple to state the initial-value problem on a
hyperplane o€ 2. Indeed, after having fixed the fields N, N# arbitrarily in
a neighbourhood of ¢, and having assigned the « true » degrees of freedom 67%
and nM on o, egs. (11) enable to complete the fields 0., #*8 on ¢; in fact they
fix the longitudinal terms and the traces of the latters. By construction, the
fields so obtained satisfy the gauge conditions (4) and the constraints (5) and
therefore from a consistent initial-value set for eqs. (2) in the Hilbert gauge.

Both fields 673, 728 are chavacterized by two functions, for they must be
transverse and traceless. Therefore, the number of degrees of freedom is two.

3 - Splitting of field equations

The introduction of the decomposition of the tensors O.s, 7% into the field
equations provides a further insight into the physical significance of the
decomposition itself. Splitting both sides of eqs. (2), making use of the uni-
queness property, and passing to second-order equations, we obtain

(12a) 80 0,073 = V2075,
(12D) B000Es = —L0p0uék + 1050 + 3N + 8Ny,
(120) ao 800 = éV'—’@ - %Vg au E“ + 2(V')‘.Z\T —}— 50 a;L.AT”) .

In view of eq. (8), eq. (12b) is a dynamical equation for the longitudinal
term of Oxg.

Eq. (12a) is a wave equation for the dynamical variables 07%; it does not
involve the gauge fields N, N#. In this sense, the decomposition (6) has set
apart the variables the time evolution of which is deseribed in a completely
gauge-independent way. On the contrary, on the ground of egs. (12b, c), the
time evolution of the functions 0, & depends explicitly on the choice of the
gauge fields [7]; in particular, these relations reduce to the wave equations
00 0o = V2&p5; 0,0,0 = V20 only after inserting eqs. (11) in them. By choos-
ing a gauge different from Hilbert's one, the time evolution of the functions 0,
& is modified; so only the variables 073 and the conjugated momenta et
have full dynamical meaning. This is consistent with the identification of
these variables with the true degrees of freedom of the gravitational field.
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Sunto

Utilizeando un formalismo analogo al metodo ADM, si serivono in forma hamiltoniana
le equazioni di campo linearizzate della Relativita Generale e viene formulato il corrispon-
dente problema dei dati iniziali. Si analizzano infine gli effettivi gradi di liberta dinamici
del campo gravitazionale.



