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RogEr YUr CHI MING (%)

On injective and p-injective modules (**)

Introduction

C. Faith ([4];, theorem 14) proved that right PCI rings (rings whose proper
eyclic right modules are injective) are either semi-simple Artinian or right
semi-hereditary simple domains. In the first section of this note, we prove
the following p-injective analogue of Faith’s theorem. Left PCP rings (rings
whose proper cyelic left modules are p-injective) are either von Neumann
regular or simple domains. Next, commutative hereditary Noetherian rings
are characterised as rings whose divisible modules are injective. If 4 is a
semi-prime indecomposable ring such that any divisible left or right 4-module
is injective, then A/I is an Artinian serial ring for every non-zero ideal I of 4
(this is motivated by a well-known theorem of Risenbud-Griffith-Robson).
Letf Ore domain are characterised in terms of indecomposable CS-rings [3].

Finally, characterisations of semi-simple and simple Artinian rings are
given.

Throughout, A represents an associative ring with identity and A-modules
are unitary. Z and S denote respectively the left singular ideal and the left
socle of 4. Reecall that a left A-module M is p-injective (resp. f-injective) if,
for any principal (resp. finitely generated) left ideal I of A and any left
A-homomorphism g: I — M, there exists y € M such that g(b) = by for all
bel. A is von Neumann regular iff every left A-module is p-injective
(f-injective). An element a of A is called von Neumann regular iff A« is a
direct summand of , 4. An ideal (two-sided) T of 4 is called von Neumann
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regular iff every element of 7' is von Neumann vegular. As usual, 4 is called
a left V-ring if every simple left 4-module is injective [4],. Call 4 a left
p — V-ring [11]; if every simple left A-module is p-injective. Left p — V-rings
(which are fully left idempotent) generalise both regular rings and left V-rings
(since Faith has shown that regular rings need not be left V-rings and Cozzens
has constructed a left PCI V-domain which is not regular). Since several
years, regular rings and V-rings raise a great deal of interest and research
activity (cfr. for example [4],, [5], [7], [9], [11], ).

1 - CPP and PCP rings

In ([13];, theorem 2), it is proved that left CPP rings (rings whose cyclic
left modules are either projective orp-injective) are fully left idempotent, left
p-p--rings. We here call A a left PCP ring if every cyeclic left A-module which
is not isomorphic to ,A4 is p-injective. It is well-known (J. H. Cozzens) that
simple left PCI domains need not be division rings. Consequently, left PCP
rings generalise both regular rings and left PCI rings. Our first result improves
([13],, theorem 2).

Theorem 1.1. Let A be a left CPP ring. Then A is either a left p.p. left
Pp —V-ring with a non-zero von Neumann regular socle S or a regular ring with
zero socle or a simple domain,.

Proof. Since 4 is fully left idempotent [13],, then A4 is semi-prime.
We first suppose that § = 0. If U is a minimal left ideal of A,then 4 = U@ M,
where M is a maximal left ideal of 4. If M C S, then 4 = § is semi-simple
Artinian. Suppose M ¢ S8. Then M contains a proper essential left subideal L.
Since M/L and A/L are both p-injective left A-modules (A4 /L projective leads
to L= M which is a contradiction), and U ~ 4/M ~ (4/L)(M[L), then
A|L ~ (M|L)® K, where (A/L)(M|/L)= K is p-injective. This proves U
p-injective, Since any simple projecrive left A-module is isomorphic to a
minimal left ideal of 4, then A is a left p —V-ring. I se 8, then 4s = U,
@...»U,, where each U, is a p-injective minimal left ideal. Then 4s is a
finitely generated p-injective left ideal which is therefore a direct summand
of 4A. This proves that § is a von Neumann regular ideal. Now suppose that
8 =0. If A is an integral domain, then A being fully left idempotent [13],
implies A simple. If 4 is not an integral domain, there exist 0 % b, cc 4
such that be = 0. Since 4 is a left p.p.ring [13],, then 4 = I(¢)@® B for some
non-zero left ideal B of A. Since § = 0, then the above argument shows
that both i(¢) and B are cyelic p-injective left A-modules which proves that 4
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is a left p-injective ring. Then any cyeclic projective left 4-module is p-injective
which implies that every cyelic left A-module is p-injective. This proves
that 4 is regular in this case.

Corollary 1.2. A left CPP ring with zero socle is either regular or a
simple domain.

Corollary 1.3. A left CPP ring is a left p —V-ring.

Proof. If 4 is a left CPP simple domain which is not a division ring,
then there exists no simple projective left A-module. Thus 4 is a left p —V-
domain. The corollary then follows from Theorem 1.1.

The first part of the proof of Theorem 1.5 yields the following result con-
cerning CPP rings.

Proposition 1.4. An indecomposable left CPP ring is either regular or
a simple domain.

If A is a left CPP ring, then for any ideal 7' of 4, A/T is a left CPP ring.
The next theorem is motivated by ([4]:, theorem 14).

Theorem 1.5. A4 left PCP ring is either von Neumann regular or a simple
domain.

Proof. Let 4 be a left PCP ring. Then A4 is a left CPP ring and if
§ =0, by Corollary 1.2, 4 is either regular or a simple domain. Now let
S5 0. Then § is a von Neumann regular ideal (Theorem 1.1) and by Zorn’s
Lemma the set of von Neumann regular ideals containing S has a maximal
member 7. Suppose A is not regular. Since B = A/T contains no non-zero
von Neumann regular ideal, if ,B is p-injective, then B is a left p-injective
left CPP ring which is therefore regular (cfr. the proof of Theorem 1.1). This
contradiction proves that ,B is projective which implies 4 = T'@® D, where
T=Ae, ¢e=¢*€ A and D = A(1—e) is also an ideal of A (since (1 —e)4d
Cr(ded) =1(Aed)Cl{e) = A(1 —e¢)). Thus 7T is a regular ring with identity
and D contains no minimal left ideal of 4. If S c T, then 4,7 contains a pro-
per essential left submodule and the proof of Theorem 1.1 shows that D is
a left p-injective left CPP ring which is therefore regular. Then 4 = 7@ D
is regular which is a contradietion. Thus 7' = § is a direct sum of minimal
left ideals which are p-injective (Corollary 1.3). Since a direct sum of left
A-modules is p-injective iff each direct summand is p-injective, then T is
p-injective. Since A4 is a left PCP ring, if f: 4,4 — ,D is an isomorphism, then
for any minimal left ideal U of 4, f(U) is a minimal left ideal of A contained
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in .D which contradiets 7N .D == 0. Thus ,D is p-injective which implies 4
is a left p-injective left CPP ring. This again contradicts our hypothesis
that 4 is not regular. This proves that S50 implies A regular.

Corollary 1.6. (1) A is von Newmann reqular iff A is a left PCP ring
containing a non-zero divisible left or right ideal.
(2) If A s a left PCP ring whose left ideals are either divisible or pro-
jective, then A is either regular or a simple left hereditary domain.

Proof. An integral domain containing a non-zero divisible left or right
ideal is a division ring.

Rings whose complement left ideals are direct summands, called left
CS-ring, are studied in [3]. Left continuous rings (in the sense of Utumi [12])
are obviously left CS-rings but the converse is not true.

Corollary 1.7. A left PCP, left CS-ring is either left continuous regular
or a simple left Ore domain.

Proof. A regular left CS-ring is left continuous. If 4 is a left CS-domain,
then A is uniform which implies A a left Ore domain.

Corollary 1.8. (1) A left PCP ring with maximum condition on left
annihilators is either semi-simple Artinian or a simple domain.
(2) A left PCP ring with mazimum condition on complement left ideals
is either semi-simple Avtinian or a simple left Ore domain.

A left ideal of 4 is called reduced if it contains no non-zero nilpotent
element.

Corollary 1.9. A left PCP ring whose complement left ideals are ideals
is either strongly regular or a simple left Ore domain.

Proof. Since Z = 0, 4 is reduced by [13];, lemma 1. Since an integral
domain is left Ore iff 0 and 4 are the only complement left ideals, the corol-
lary then follows from Theorem 1.5.

Since a left p —V-ring whose maximal left ideals are ideals is strongly
regular, the next corollary then follows.

Corollary 1.10. A prime left PCP ring whose maximal essential left ideals
are ideals is a primitive reqgular ring with non-zero socle.

(Tt is now known that prime regular rings need not be primitive (0. I. Do-
manov), which settles in the negative a question raised by I. Kaplansky).
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2 - Injective and divisible modules

This section is motivated by the following result of Levy ([8], theorem 3.4).
If A is a left hereditary ring with a two-sided classical quotient ring which
is semi-simple Artinian, then every divisible left A-module is injective. We
here consider rings over which the notions of injectivity, p-injectivity and
divisibility coincide. The next lemma shows that this happens iff divisible
modules are injective.

Lemma 2.1. A p-injective left A-module is divisible.

Proof. Let M be a p-injective left 4-module. If ¢ is a non-zero-divisor
of 4, for any y € M, define a left A-homomorphism g: Ad¢ — M by g(ac) = ay
for all ac A. Then there exists w € M such that g(ac) = acu for all ae 4.
In particular, y = g{¢) = cu € cM which implies M = ¢ and proves M
divisible.

Lemma 2.2. If A is an integral domain, then any divisible left A-module
i8 p-injective.

Proof. Let D be a divisible left A-module, P = 4b, 054 be 4, and
f: P — D a left A-homomorphism. Since f(b) € bD, f(b) = bd for some d D
which implies f(ab) = af(b) = abd for all a € A. This proves D p-injective.

Remark. Divisible modules over integral domains need not be injective.
If K is a commutative field, 4 = K[y, 2], I = K(y,2), I(= Ay -+ Az) the
left ideal of 4 generated by y and z, then the left A-module F/I is divisible
but not injective.

Corollary 2.3. If A is a left PCP ring, then a left A-module is p-injective
iff it is divisible.

Commutative rings whose singular modules are injective are hereditary
regular bubt not necessarily semi-simple Artinian [1]. Therefore, the rings
considered in the next result need not be left or right Noetherian. However,
we show that Matlis’ conjecture on decomposable modules holds for such rings.

Theorem 2.4. Let A be a ring whose divisible singular left modules are
injective and such that every maximal essential right ideal is f-injective. Then A
18 a regqular left hereditary ring such that every direct summand of any completely
decomposable left or right A-module is completely decomposable.
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Proof. It is well-known that 4 is left hereditary iff every homomorphic
image of any injective left A-module is injective. For any left A -module M ,
if M is an injective hull of M, then MM is a divisible singular left 4-module
(since any homomorphic image of a divisible left 4-module is divisible) which
is therefore injective. The proof of ([13],, proposition 4) then shows that 4
is left hereditary. Now let I' be a finitely generated proper right ideal of A
and B a maximal right ideal containing #. If R is essential in 4, (and therefore
f-injective), the canonical injection ¥ — R yields b = ub for some w e R and
every b e F which implies I(F') = 0. Otherwise, R is a direct summand of 4,
which again implies I(F') 5= 0. Then a well-known theorem of H. Bass implies
that any finitely generated projective submodule of a projective left A-module
is- a direct summand. Since A is left semi-hereditary, then every finitely
generated left ideal is a direct summand of ,4 which proves A regular. By
Lemma 2.1, every singular left A-module is injective and by ([6],, corollary 3.7 )
every singular right A-module is injective. Then every direct summand of
any completely decomposable left or right A-module is completely decomposable
([13]s, corollary 4).

It is well-known that a commutative integral domain is a Dedekind ring
iff every divisible module is injective. Commutative hereditary Noetherian
rings may be similarly characterised. Call A a left (vesp. right) DI-ring if
every divisible left (resp. right) 4-module is injective.

Lemma 2.5. If A is a left DI-ring, then A is a left hereditary left Noe-
therian ring.

Proof. We note from the proof of Theorem 2.4 that rings whose disisible
singular left modules are injective are left hereditary. Since a direct sum of
left A-modules is p-injective iff each direct summand is p-injective, then
Lemma 2.1 implies that any direct sum of injective left A-modules is injective
and by a well-known theorem ([4],, p. 111), 4 is left Noetherian.

Applying Small’s theorem [10], we get

Proposition 2.6. A left DI-ring has a classical left quotient ring which
is left hereditary left Artinian.

Applying Chatter’s theorem [2], we get

Proposition 2.7. If A is a left and right DI-ring, then A is a finite

direct sum of rings each of which is either hereditary Artinian or prime hereditary
Noetherian.

Applying ([8], theorem 4.3), we get
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Proposition 2.8. If A is a semi-prime left DI-ring, then A is a finite
direct sum of prime left hereditary left Noetherian rings.

Proposition 2.9. The following conditions are equivalent for a semi-
prime ring A:
(1) A is hereditary Noetherian (both left and right);
(2) 4 s a left and right DI-ring.

Proof. Apply ([8], theorem 3.4) to Lemma 2.5.

Since a commutative ring is semi-prime iff it is nonsingular, Proposition 2.9
yields the following

Corollary 2.10. A commutative ring is hereditary Noetherian iff it is DI.

For any left ideal I, the closure of I in 4 is Cl(I) = {bed|/LbCT for
some essential left ideal L of 4}. I-- Z is always essential in ClU(I) {13],
and if Z =0, then CI(I) is a complement left ideal of A. Obviously, I an
ideal of 4 implies CI(I) an ideal of A.

Proposition 2.11. Let A be an indecomposable left CPP left CS-ring.
Then A is either primitive left self-injective regular or a simple left Ore domain.

Proof. By Proposition 1.4, 4 is either regular or a simple domain. If 4
is a simple left CS-domain, any non-zero complement left ideal coincides with
A which implies 4 is a left Ore domain. Now suppose A is regular. Then A
is left continuous [12] and for any non-zero ideal 7' of 4, CI(T) is a direct
summand of ,4. Then 4 = CI(T)® K, where OlT)= Ae¢, ¢ =e>*c A and
K = A(1—e) is also an ideal of A (cfr. the proof of Theorem 1.5). Since A
is indecomposable, then K = 0 and .7 is essential in 44. Therefore 7,7, 5~ 0
for any non-zero ideals T, T, of A which implies 4 prime. Then 4 is a prime
left self-injective regular ring from ([12], p. 604) and is therefore primitive
by a theorem of Goodearl ([6],, p. 181).

A well-known theorem of Risenbud-Griffith-Robson ((4]., p. 244) states
that if 4 is a hereditary Noetherian prime ring, then 4/I is an Artinian serial
ring for every non-zero ideal I.

Theorem 2.12. Let A be a semisprime indecomposable left and vight
DI-ring. Then A[I is an Artinian serial ving for every non-zero ideal I of A.

Proof. By Lemma 2.5, 4 is a (left and right) hereditary Noetherian ring.
Since 4 is semi-prime, then 4 has a two-sided classical quotient ring @ which
is semi-simple Artinian. Therefore @ is the regular maximal left and right

14
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quotient ring of 4. Since A is left and right non-singular, then every comple-
ment left (resp. right) ideal is a left (vesp. right) annihilator ([6],, Theorem 2.38).
Then A being hereditary Noetherian implies that 4 is a left and right OS-ring
([4]., Lemma 20.27). By ([3], theorem 6.14), A4 is either Artinian or prime.
If A4 is Artinian, then by Proposition 2.11, 4 is prime. Thus 4 is a prime
hereditary Noetherian ring and by ([4],, theorem 25.5.1), A/I is an Artinian
serial ring for every non-zero ideal I of 4.

We conclude this section with a characteristic property of left Ore domains
in terms of indecomposable left CS-rings.

Theorem 2.13. The following conditions are equivalent:

(1) A is a left Ore domain;
(2) A is an indecomposable left CS-ring with a reduced essential left ideal.

Proof. (1) implies (2) obviously.

Assume (2). Since A contains a reduced essential left ideal F, then 4 is
semi-prime. Now suppose that Z £ 0. Then Z N F is essential in ,Z. If
0% zecZ, there exists be. A such that 0 =bzeZ N E. Then there exists
¢e A such that 0 5% chbze€l(z). Since ¢bze Z N B, (2¢hz)? = 0 implies zebe = 0
and (cbz)? = 0 implies ¢bz = 0, which is a contradiction. This proves Z = 0.
Since A is semi-prime, the proof of Proposition 2.11 shows that any non-zero
ideal of A4 is an essential left ideal of 4 which implies A prime. Suppose there
exist non-zero s,ted such that st =0. Then 0= useF for some u €A
and since A is prime, taus 5= 0 for some ae Ad. But (faus)* = 0 and since
taus € I, then taus = 0, a contradiction. Thus 4 is an integral domain and
since A is left CS, then A is a left Ore domain which proves that (2) implies (1).

3 = PLD rings

In this section, we consider a class of rings which generalise both left duo
rings and semi-simple Artinian rings.

Definition. A4 is called a PLD (pseudo left duo) ring if for any essen-
tial left ideal F of A different from 4, every left subideal is an ideal of E.

Begore characterizing semi-simple and simple Artinian rings, let us men-
tion, without proof, a useful Lemma.

Lemma 3.1. If A is a prime PLD ring, then A s either simple Artinian
or a left Ore domain.
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It is known that: (1) (Goodearl) simple left and right self-injective rings
need not be Artinian ([4],, p. 104); (2) prime left Noetherian, left hereditary,
left V-rings need not be Artinian ([4],, p. 175). We here give a few nice charac-
teristic properties of simple Artinian rings in terms of regular rings and
V-rings. @ will denote the regular maximal left quotient ring of 4 whenever
Z = 0.

Theorem 3.2. The following conditions are equivalent:

(1) A s simple Artinian;

(2) A is a prime PLD regular ring;

(3) 4 is a prime PLD left f-injective ring;

(4) A4 is a prime regular ring such that every essential left ideal of Q is
an ideal of Q;

(8) A is a prime regular ring such that @ is PLD;

(6) A is a prime PLD left V-ring;

(7) 4 is a prime PLD ring with an injective simple left module.

Proof. (1) implies (2) through (7) obviously.

Since any left module over a regular ring is f-injective, (2) implies (3).

Assume (3). Then 4 left f-injective implies that every principal right ideal
is a right annihilator ([7], theorem 1). If 4 is an integral domain, then 4 is
a division ring. Thus (3) implies (1) by Lemma 3.1.

Since a well-known theorem of Jain, Mohamed and Singh states that prime
left self-injective rings whose essential left ideals are ideals are simple Artinian,
then (4) implies (5).

Assume (5). Since ¢ is a prime left self-injective regular ring, then @ is
simple Artinian by (2) or (3). A theorem of Sandomierski then implies that 4
satisfies the maximum condition on complement left ideals ([4],, p. $3).
Since A is prime regular, then (5) implies (1).

Assume (6). Suppose 4 is not simple Artinian. Then by Lemma 3.1, 4 is
left Ore domain. If L is a proper essential left ideal of A4, then L contains a
maximal left subideal M (since 4 is a left V-ring). Since I cannot be a mi-
nimal left ideal of A, then M == 0 and if 0 3£ be M, define left A-homomor-
phism f: b — L/M by f(ab) = a + M for all a e L. Since L/M is injective,
there exists e¢e L such that f(ab) = abe 4 M for all ee L which implies
a—abce M. Then A PLD implies abc € M and hence L C M, a contradiction.
Thus A contains no proper essential left ideal and since A4 is a left Ore domain,
then 4 is a division ring. This contradiction proves that (6) implies (1).

Assume (7). Suppose 4 is not simple Artinian. Then A4 is a left Ore domain
(Lemma 3.1) and 4 is not a left V-ring by (6). Let U (~4/M) be an injective
simple left 4-module, where M is a maximal left ideal of 4. Then M is essen-
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tial in 4. Suppose that every proper essential left ideal of A is contained
in M. Then any maximal left ideal, being essential, coincides with M which
implies that every simple left A-module is isomorphic to A4/M. This con-
tradicts the hypothesis that 4 is not a left V-ring. Thus there exists a proper
essential left ideal L which is not contained in M. If ¢g: L — A/M is the left
A-homomorphism defined by g(b) = b - M for all be L, then L/K ~ A|M,
where K = kerg is a maximal left subideal of L. If 0 ¢ ce K, define a left
A-homomorphism f: Le — L/K by f(ac) = a + K for all ae L. Since K is
an ideal of L, this leads to a contradiction as in the proof of « (5) implies (1) ».
Thus (7) implies (1).

Finally, ([4],, theorem 14), ([4], lemma 20.27 and Ex. 14 (p. 24)),
({71, theorem 1) and Theorem 2.3 (6) yield

Theorem 3.3. The following conditions are equivalent:

1) A is semi-simple Artinian;
A is @ PLD left PCI ring;
18 & left p-injective left DI-ring;
18 @ right p-injective left DI-ring.

In a recent paper (Hiroshima Math. J. 9 (1979), 137-149), Hirano and Tomi-
naga extend our results in [13], to s-unital rings and prove the following
theorem concerning CPP rings. If A is an s-unital right CPP ring which is
not regular, then A = S@ T, where S is a right (and left) completely reducible
semi-prime ring and 7' is a simple domain (not a division ring) all of whose
proper cyclic right modules are divisible.
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