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JONN J. SACCOMAN (¥*)

Some results on Hahn-Banach extension properties (**)

1 - Introduction

One of the many ramifications of the Hahn-Banach theorem involves the
extension of linear mappings. In this paper we consider several relation-
ships between the Hahn-Banach sublinear extension property and the Hahn-
Banach norm extension property. J. Kelley [3] showed that each real Banach
space X with the Hahn-Banach norm extension property is isometrically
isomorphic to C(S), the space of continuous real valued functions on an extre-
mally disconnected compact Hausdorff Space S. We observe that relative
to the usual function ordering, C(8) is an « order complete real ordered linear
space with an Archimedean unit ». In this paper all linear spaces are assumed
to be real.

As we indicate in the sequel, there are many interesting examples of order
complete ordered linear spaces with an Archimedean unit. In this note we
show that on each order complete ordered linear space X with an Archimedean
unit, & norm can be constructed relative to which X has the Hahn-Banach
norm extension property.

We also obtain the following interesting corollaries.

Corollary 1. ZEach Banach space X with the Hahn-Banach norm extension
property has a « natural v ordering with an Archimedean wwit relative to which
it has the Hahn-Banach sublinear extension property, and conversely, each ordered
linear space which has an Archimedean unit and the Hahn-Banach sublinear
extension property, has a natural norm relative to which it has the Hahn-
Banach norm extension property.

(*) Indirizzo: Dept. of Math., Seton Hall University, South Orange, NJ 07079, U.S.A.
(**) R cevuto: 10-X-1979.
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Corollary 2. Let X be a Banach space with dimension d (not neceessarily
finite). Let the unit ball B in X* (the dual space of X) be topologized with the
weak star topology. If each subspace of C(B) with dimension d has a nonempty
intersection with the cone of positive functions in C(B), then X has the Hahn-
Banach noyrm extension property.

2 « Preliminaries

As usual an ordered linear space (o.ls.) X is one with a partial ordering
< on X relative to which translation by members of X and multiplication
by positive numbers preserves order and multiplication by negative numbers
reverses order. A wedge Wc X is a convex set such that {Wc W for every
t>0. A cone is a wedge containing no line through 0. An o.Ls. is order com-
plete if each nonempty subset with an upper bound has a least upper bound.

Definition 2.1. A normed linear space (n.l.s.) X has the Hahn-Banach
norm extension property if for any n.l.s. Y, any subspace M of ¥, and any
bounded linear operator (b.l.0o.) T' mapping M into X, there is a b.l.o. TV map-
ping Y into X with |T'|=|T| and 7'(y) = T(y) for every yec M.

Definition 2.2. An ols. X is said to have the Hahn-Banach sub-
linear extension property if for any linear space Y, any subspace M of Y,
any linear function f mapping M into X, and any sublinear function p (ie.,
P+ ¥:)<p¥) + p(y.) and p(ay) = ap(y) for all a>0), where p maps Y
into X with f(y)<p(y) for all y € M, there is a linear function ¥ mapping ¥
into X with F(y)<p(y) for all ye Y and F(y) = f(y) for all y e M.

Definition 2.3. An Archimedean unit in an o.l.s. X is an element
¢€ X such that ¢ > 0 and for each x e X there is a positive real number ¢,
with << 1,e.

Following the usual notation [— ¢, ¢] = {#€ X|— e<z<e}. Also, for any
Archimedean unit e, [— ¢, €] is radial, i.e. for each finite set ¥ c X, there
exists a real number A, such that E c[— le, le] whenever |1]|> |4,].

3 - Examples

The following are some examples of order complete o.l.s. with an Avrchi-
medean unit.
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Example 3.1. Let X be an n#-dimensional real vector space with basis
{@1, @y ..., @}, Any @,y € X are given uniquely by

m:"alxl"}_"'_{—anmin ?/2131‘”1+---+ﬂnwn~

Define the ordering < by o<y if a,<f; for ¢ =1,2,...,n TFurther, define

9)\/"?/ == (‘xlvﬂl) ml + e + (‘xn\/ﬂn)w b
where («;Vf:) = max {«;, 8}, and let ¢ =a2; 4 ... + z,.
Example 3.2. Let X be the space of continuous real valued functions

on a topological space T'. Define the ordering < as usual, i.e., f<g if f(z) < g(x)
for each e 1. Further, define (fVg)(x) = f(®)Vg(x) and let ¢ = 1.

Example 3.3. Let X be the space of continuous real valued functions
on an extremally disconnected compact Hausdorfl space. Define « < », « V »
and ¢ as in Example 3.2 [2].

Example 3.4. Let X = I”(S, u) the space of equivalence classes of
real valued p-summable functions where p > 0 and (S, x) is a finite measure

space. Define « < » by f<g if f(x)<g(x) for almost all e X. Further, define
«V» and e as in Example 3.2 ([1], p. 106).

4 - Main results

Lemma 1. Let X be an order complete ol.s. Let ¥ be an o.l.s. and
W={weY|w>0} Let M be a subspace of Y such that for each yeY

+MyNWwW=-0 if and only if (y+M)Nn(—W)=0.

Then each linear monotone mapping | from M into X has a linear monotone
extension F from Y into X.

Proof. Zorn’s lemma guarantees the existence of a maximal linear mo-
notone extension f, of f from M to a subspace M, of Y. Using the inter-
section property of the hypothesis, it is easy to show that for each ye Y

-+ M)NnW=%0 if and only if (@w+M)NO(— W)=£6.

‘We claim that M, = Y and hence f, is the required extension I
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If the claim is false, then there is a yeY such that y¢ M;,. Let 4
= {v|y € M, and v<y} and B = {2]|2€ M, and y<z}. We observe that 4 == 0
if and only if B = 0. For, v€ 4, if and only if v<y, if and only if y —ve W,
if and only if there is a z € M, such that — y 4+ ze W, if and only if — y>—#,
if and only if y<#, if and only if ze B.

We consider the two cases 4 =0 and As-0. If 4 =0, then B = 0.
Let ¢ce X be fixed, B denote the set of reals and M, = {v - ty|ve M, and
te R}. Define f, mapping M, into X by f.(v - ty) = f,(v) - te. f, is clearly
a proper linear extension of f, and is monotone. For suppose o, -1y
<% + %y, where v, v, € My and 4,4, € B. If t, 51, then either

1
(v, —v)<y or 1

th—1, — (0, — ) > .

Thus, 4 5= 0§ or B % §§ which is contrary to 4 = @. So ¢, = ¢,, which implies
v, <v,. Henee, f(v;) <fy(v.) and

f () +tie<f (v} 4 tec.

Thus, fo(v: + t¥) = fo(v. + t7), ie., f, is monotone. This contradicts the
maximality of f,.

If A 50, then Bs=@. Clearly 2>y>v for all ve 4 and ze B. Thus,
fu(z)=>f.(v) for all v € 4 and z € B. Since X is order complete, a = sup{f,(v) |ved}
and b = inf {f,(2)|# € B} exist. Further, a<b and we take ¢ to be any element
of satisfyng a<<e<b. Let M, and f, be defined as above. Again it is clear that f,
is a proper linear extension of f, fromM,; to M,. Further, f, is monotone. For
suppose v; + L y<v, -+ &,y where v, v.€ M; and ¢, R If ¢, =1, the
monotonicity of f, follows as above. If f, 5 ¢,, assume without loss of gene-
rality that ¢, << {,. Then

1 1

(v, —v,) <Y, hence (v, — ;) € 4.
tz_tl 2—‘t1
1
Thus fl(t—t (v, — @2))<0 and filv) — Av) < (8 —t)e.
279
Therefore fi(v,) 4+ tie<fi(v) + 1o and falor + G y) <folve + t29) -

Thus the monotonicity of f, is established and the maximality of f, is con-
tradicted.
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Theorem 1. Let X be an order complete o.l.s. with an Archimedean
unit e. Then there is a norm on X relative to which X has the Hahn-Banach
norm extension property.

Proof. TFirst, we utilize Lemma 1 to establish the fact that X has the
Hahn-Banach sublinear extension property. I.e., given a linear space Y, a
subspace M of Y, a sublinear function p mapping ¥ into X and a linear
mapping f of M into X such that f(y)<p(y) for each y € M, we show there is
a linear extension F of f mapping ¥ into X such that Iy)<p(y) for each
ye Y. Let

L=YxX, E={(y,fy)lyeM}, K= {ya)|yecY, veX and p(y)<a}.

Then W = K — E is a wedge in the linear space L relative to which L is an
ordered linear space. Moreover, W/E is a wedge in the factor space L|E
relative to which L/F is an ordered linear space.

Let X* = {(0,x)[xe X and 0 is the additive identity of Y}. Then for
@y, 4, € X, (0, 2y) + B = (0, @) + E if and only if (0, », — m,) € B, if and only
it f(0) = @, — @,, if and only if @, — 2, = 0 and », = a,.

Hence the mapping

g: X#|E -+ X given by g((O, ) + E) =T,

is well defined. Further, it is easily seen to be linear and monotonic.
Now we claim that for each member (y, #) -+ E of L/E, the subspace
X*#|E satisfies

(((9, @)+ B)+-X*[E) "\ W/E+0 if and only if (((y,#)+E)+X*|E) N (—W/E)+0.

For suppose there is an #, € X such that
(, )+ E+(0,2) +BeW/E.

Since X has an Archimedean unit, there is an @, € X such that @, > p(— ) +
ie, #,—@>p(—y). This means (—y,z,—2z)eW. But (—y, 2,— 2)
= (=4, — @) + (0, ). Thus ((—y, — @) -+ B) + ((0, #,) - B) € W/E so that
((, @) + B) + ((0, — @) + E) e (— W/E).

The implication in the opposite direction is established in a similar fashion.
Hence, we can conclude from Lemma 1 that g has a linear monotone extension
G from L[E into X.

13
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Now let j be the mapping from L into L/F defined by

iy, @) = (g, ) + B.

Let H denote the composite mapping Goj. It is easy to show that H is a
linear monotone mapping from L into X.

We note that for each ye Y there exists an ze X with H ((y, ®)) = 0.
For let @, be an arbitrary member of X. Take » = z; — H((y, #;)). Then

H((y, »)) = H((y, 2.— H(y, #,))) = H((y, &) — (0, H(y, 21)))
= H((y, »,)) — H((0, H{, #,))) = H((y, )) — G((0, H(y, %)) -+ B)
= H((y, #.)) — H((y, z:)) = 0.
Further, we note that for ye ¥ and o, m e X
H((y, @) = 0 = H((y, z.))
implies
H((y, @) — H((y, ) = H((0, @1~ @)} = 0.
But H((0, 3,— @) = G((0, (3,— @) + B)) = v, — a, .

Hence, x; = ,. Thus, we have established for each y € ¥ the existence
of a unique e X such that H((y, #)) = 0.

Define the mapping F: Y - X by F(y)=w2, where xe X satisfies
H((y, »)) = 0. For each pair (y, (%)), y € M, the pair (y,f(y)) € E. Hence,
H((y, {(y))) = 0 since F is in the kernel of H. Thus I extends f and clearly I
is linear. Moreover, for each ye ¥, F(y)<p(y). This is true for ye M by
hypothesis. For y € X — M, suppose F(y) > p(y). Then

0=H((y, Fy))) = H((y, p®)) + (0, Fy) — p(y))) > H((0, F(y) — p(¥)))
(since (y, p(y)) is in the wedge W of L and H is monotone). But
H((0, P(y)— p(¥) = Fy) — py) > 0.

Hence, we have a contradiction.
Now we proceed to establish a norm on X relative to which it has the
Hahn-Banach norm extension property.
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The order on X gives rise to the order topology T, i.e., the finest locally,
convex topology on X for which every order interval is bounded. It can be
shown ([4], p. 251) that (X, T) is normable with a norm given by the gauge
of ¢, ie.,

2] = p.(x) = Inf {1 > 0]xe[— le, Ae]} .

Let Y be any linear space, M any subspace of ¥ and T any bounded linear
operator mapping M into X. Consider the sublinear function p(y) = |7 ly]e.
By definition,

|7 = int {4 > 0| T(y) € [— e, 2el} = Zo< | T]]y] -
Also, [— ¢, €] is radial so that
T el—1Tlyle, 1T1ylel,  ie, Ty <|Tllyle=pw),
for every ye M.
Since X has the Hahn-Banach sublinear extension property, there is a

T": Y - X with T'(y) = T(y) for every y € M and T'(y)<p(y) for every ye Y.
To show [T"|=||T], it suffices to show || < |7|. Now

') <|Tllyle and —T'(y)=T'(—y) <|T]]yle
s that —ITHyle<T @) <ITllyle.
But by definition

1T(y) | =inf {1 > 0|T"(y) € [— Ze, Ael} .
Hence,

IT"WI<ITlyl  and  |7']=sup | T'@)] <] T,

flull=1
i.e., X has the Hahn-Banach norm extension property.

Corollary 1. Fach Banach space X with the Hahn-Banach norm exten-
sion property has a natural ordering with an Avchimedean unit relative to
which it has the Hahn-Banach sublinear extension property, and conversely, each
order complete ordered linear space with am Archimedean wunit which has the
Halm-Banach sublinear extension property, has a «natural» norm relative to
which it has the Hahn-Banach norm extension property.
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Proof. The first statement in the corollary is an immediate consequence
of Kelley’s result [3] and the first part of the proof of Theorem 1. The con-
verse statement follows from the second part of the proof of Theorem 1.

Corollary 2. Let X be a Banach space with dimension d (not necessarily
finite). Let the unit ball B in X*, the dual space of X, be topologized with the
weak star topology. If each subspace of C(B) with dimension d has a nonempty
imtersection with the cone of positive functions in C(B), then X has the Hahn-
Banach norm extension property.

Proof. By the Banach-Alaoglu Theorem, B is a compact Hausdorff
space. Furthermore, X is linearly isometric to a subspace of C(B) ([1], p. 93).
We identify X with this subspace. This gives X a nabural ordering, viz.,
that of C(B). Moreover, X is order complete relative to this ordering since X
is a Banach space.

By hypothesis X contains a positive function ¢ and since B is compact
Hausdorff, ¢ attains its minimum on B. Hence, there is a positive number «
such that e(@)>a for each x e B. Clearly ¢ is an Archimedean unit in X so by
Theorem 1, there is some norm on X relative to which X has the Hahn-Banach
norm extension property.

However, examining the construction of this norm in the proof of Theorem 1,
we see that it is actually the sup norm which is the original norm on X under
the identification.
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Abstract

In this paper it is shown that every order complele ordered linear space with an Archi-
medean unit has the Hahn-Banach norm extension property. A relation between the Hahn-
Banach norm extension and sublinear extension properties follows from this result. Also,
a condition under which a Banach space has the norm extension property is given.
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