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Paoro TERENZI (%)

On the structure of overfilling sequences

of a Banach space (*¥)

1 « Introduction

In this note theorems are enumerated by Roman figures, lemmas by Arabic
figures and theorems of recalls by starred Roman figures. {n} is the sequence
of the natural numbers, B+ the positive real semiaxis (B* = {te R; t> 0}),
% the complex field, B a Banach space, B’ the dual of B and S the unit sphere
of B (8; = {#ze B; |#| =1}); moreover, if {w,}c B, span {z,} is the linear
manifold spanned by {z,} and [#,] is the closure of span {x,}. We recall in 2
all the standard definitions, while in 3 we report the proofs of all the proper-
ties that we state in this paragraph.

We shall now only recall that a sequence {y.} of B is

(Dy) ([7], p. 113) overfilling if [y,] = [4,,], V infinite subsequence {y, }
of {y.};

(D.) [91, Y-overfilling if N s W lism =Y, V infinite subsequence {v..}
of {yn}§

(D) [9], convergent of order p to {gk};’“l C 8p, where 1<p<-}+ oo, if V¥m,
with - 1<m<p, I{vun} C [FJp=t 50 that Hm (¥, + 0n)/ Y0 + Vunl = T3

(Ds) [9]: with property P if, Yy e[y,], 3 two infinite complementary
subsequences {y, } and {y,. } of {y.}, which depend on y, so that y € W)+, ]

(*) Indirizzo: Istituto di Matematica del Politecnico, Universith, Piazza L. da
Vinei 32, 20133 Milano, Italy. )
(**) Ricevuto: 16-VI-1979.

28



426 P. TERENZI {23

About (D,) we recall that any separable B has an overfilling sequence com-
plete in B ([3] p. 193, [7] p. 113 (method of Ju. I. Lyubich) and [9], ) About
(D.) we remark that {y,} is overfilling <> {y.} is Y-overfilling with Y = [y,].
About (D) we point out that, as well as for [9]., also the overfilling sequences
of [3] (p. 193) and of [7] (p. 113) have subsequences convergent of infinite
order. Therefore examples of overfilling sequences, by the infinitely con-
vergent sequences, are well known; instead the structure of the general over-
filling sequence was still unknown.

Then we fill this gap, precisely we shall prove that the overfilling sequences
are just union of infinitely convergent sequences {ya}, such that the sequence {7}
of the limit points is complete in [Y.].

About (D,) we remark that a minimal sequence has not in general prop-
erty P [9);, while an uniformly minimal sequence always has this property
({91;, theorem VI), hence the minimal sequences with property P are inter-
mediate between the minimal and the uniformly minimal sequences.

Tn what follows we shall be concerned with sequences that are union of an
infinite number of sequences, then it is usefull the following definition

(Ds) {y.} is an I-sequence if 3 an order relation << among its elements
so that, Vu and m with n % m, it 18 ¥, <¥u OF Yn < Y.
Let {y,} be an I-sequence, by (D;) it follows that

(1) Vm 3 two complementary subsequences {y,, } and Ya,} OF Yntnzms
$0 that ¥, <Yn < Yna,s VA

In what follows {y.} and {,,} will always be the sequences of (1).
Our aim is now to single out the elementary sequences that form the strue-
ture of the sequences without an infinite basic subsequence.

Firstly we state a definition that regards a simple type of overfilling se-
quence.

(Ds) {ya} is elementary of first type if
(@) {y.} is overfilling;
(b)" 3 an I-sequence {7} of Sz, complete in [y,] and with 7. ¢ Gins, )
Vm, so that {y,} is infinitely convergent to {7} (that is, Vm, A{viun} C [T, ]
s0 that Im (1, + Vun)/|¥n -+ Vmal = Fu)-

n—>ro0

More complicated is the investigation of the simple types of minimal
sequences without an infinite basic subsequence, because we have to distin-
guish three subecases:

{ Ya} is elementary of second type if
)" {¥.} is minimal and Y-overfilling, with dimension of ¥ = p>1;
(b)” we have one of the following three mutually exclusive alternatives;
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(by) 3 an I-sequence {7,}7., of S, complete in Y and with 7,, ¢ [F1ne,]
Ym, so that {y.} is convergent of order p to {7.}7_;;
(by) (possible only for p =1) 3750, {&,}c ¥ with lim&, =1, a

n—>w

basic sequence {y,} of B with inf |y || > 0 and weakly convergent to 0, so
that yu/|y.] = &7 +y,, ¥u; "

(bs) (it is a combination of (b,) and (b,)) 3 an I-sequence {7}
of 8; and 7 0, with {7} U 7 complete in ¥, 7, ¢[7,, ), Ym and §¢[7.],
so that {y,} is convergent of order p — 1 to {7}; moreover, in the Banach
space B[[7.], 3{&}c¥ with limg, =1, a basic sequence {y,} of B, with

=0

inf ly, + [7:]] > 0, {y, -+ [#:]} basic and weakly convergent to 0, so that
Y + (3D + [F:]] = @7 + ¥2) + (7], Y.

The main result of this note is the following theorem (where we leave out the
trivial case of [y,] finite dimensional subspace of B).

I. Every sequence {y.} of B has an infinite subsequence {y, } satisfying
one of the following three mutually exclusive alternatives:

(2) {ynk} 8 elementary of first type;
(b) {ynk} has property P and is clementary of second type;
(€) {¥,,} is basic.

It is obvious that the overfilling sequences and the basic sequences have al-
ways property P, hence the following immediate corollary of theorem I answers
a question raised by author ([9],, problems 1 and 2).

Corollary I. Bvery infinite sequence of B has an infinite subsequence with
property P.

We pass now to consider the stability of preceding properties for suffi-
ciently «near» sequences. We call limit I-sequence the I-sequence {f,} of the
limit points of (Dg) and (D,), then we state that

IX. Let {y.} be an eclementary sequence of B, with {i.} limit I-sequence:
= Ie,} C Rt so that, Y{x,} c B with |©,— y,] < &,, Yn, {,} has an elemen-
tary subsequence with {F,} U {T,} limit I-sequence, where §,<Z,, Yk and n.

A minimal sequence with property P is stable for «near» sequences
([9], theorem III); therefore, in theorem I, the sequences of (b) and (c) are
stable for « near» sequences. Instead this is not true for (a) of theorem I,
because every {y.}, with [y,] infinite codimensional subspace of B, can be ap-
proximated as we want by minimal sequences of B ([9], theorem IV). Then
by theorem II it immediately follows that
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Corollary II. Let {y,} be an clementary sequence of B, then I{e.}c R+
so that, V{@,}c B with |z, — Yul < &, Y1, we have the following implications :

(a) {y.} is of 2-nd type (and has property P) = {x,} has an elemen-
tary subsequence of 2-nd type (and has property P);

(b) {y.} is of 1-st type and {w,}C[y.] = {.} is elementary of
1-st type and complete in [Ya].

Pinally let us raise a few questions.
It is well known ([5], see also [6] p. 116) that, if {@,} c B with w, ¢ span {.}'2;

n =1

VYm>1, then 3 an M-basis {y.} of [#.] with span {z,},_, = span T

ne=l
Ym. We raise the question if it is possible to extend this property to the
I-gequences, that is

Problem 1. Let {x,} be an I-sequence of B, with =, ¢ [z, 1, Vm, does
it exist an M-basic I-sequence {y,} so that [y, 1= [#,,] Ym?.

It is possible to verify that this problem is equivalent to next problem,
which concerns an improvement of theorem I.

Problem 2. Is it possible to get M-basic the limit I-sequence of (a)
and (b) of theorem I?

2 - Standard definitions and recalls
Let {w,}cB and {f,}c B’, we recall that
(Dy) {wa} is minimal if @, ¢ [@n],,, VM3
(Dy) {m,}is uniformly minimal if inf {inf {|x,, + @ ; wespan {@.}, ..} }> 03

m

(D1o) {@n, fn} is a biorthogonal system if f,(w,) = 6, Ym and n.

Let {@,,f.} be a biorthogonal system of B, we recall that

(Dy) {@.} is M-basis of B if [f,] is total on [@,] (that is [x.] O [f.]. = {0},
where [f,], = {# € B; f.(@) = 0 V¥a}) and if [#,] = B;

(Dy) {@a} is basis of B if @ = Y, fu(®)@., Vo B;
’ 1
(Dys) {®.} is M-basic (basic) sequence if {w,} is M-basis (basis) of [w,];

(D1a) {@n, fu} isi bounded if |@,] - |f»] <M < -+ oo V.
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Moreover we recall that

(a) ([5], see also [8], p. 54) {w,} minimal < I{f,} c B' with {w,, f.}
biorthogonal system;

(b) ([1], see also [8], p. 165) {w,} wniformly minimal < {f.}C B’
so that {w,, f,,[[mk]} is a bounded biorthogonal system of [x]).

3 - Lemmas and proofs of theorems
Let {y,} be an infinite sequence of B, then

(Dys) we call nucleus of {y,} the set N{y,} = {y € [y.] so that, V infinite
subsequence {y, } of {y.}, it is ¥ €[y,.1};

(Dy) we say that {y.} is denucleated if N{y, } = 0, V infinite subsequence
{Unt Of {Un}-

1 — Let {x,} be an infinite sequence of B, then: = 3 an infinite subsequence
(.} of {w.}, so that N{y.} = N{y, }, V infinite subsequence {y,.} of {yn}-

Proof. Let U bé the set of all the infinite subsequences of {w,}. If u,
= {@y»} and u, = {w,,} are two elements of U, let us set in U the following
order relation

< Uy if {7y, T} C {0} s0 that {w,,},~5 € {2 }=7,3
2
@ wy < g if u;<#u,, moreover N{z, }cC N{z, }

Let V be a tiotally ordered subset of U, then let us set
(3) N ={weN{=,}; {» eV}

Let now {z,}c B so that
(4) {z.}c N, moreover N C[z,].

By (3) and (4) we have that

(3) Hu}c V, with u, = {&, }v, Yn, so that z,e N{&, I}, Vn.
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Now V is totally ordered, hence let us set
(6) v, = max {u,; 1<k<n}, Vn.
By (5) and (6) it follows that
M {e:foe, C N, }i2,, where {2,,}2 = v, €V, With v,<vupz, V0.
We have now two possibilities
(a) Suppose that 35 e U so that

(8) b= {w;}eV, with v,<%, Vn.

By (2), (7) and (8) {z.} c N{w, }, on the other hand the nucleus of & sequence
is a subspace of B, hence N C[2,]C N{w;} by (4); but, by (3), N{z, }C N,
because ¥e V by (8), then

(9) ‘ N = Nw;).
Let now v e V, it is v<® or ¥ < v because V is totally ordered; but, by (2), (3),
(8) and (9), it is impossible that ¥ < v; hence v<%, that is ¥ is a maximal ele-
ment of V.

(b) Suppose now that the element ¥ of (8) does not exist, then we have that

- (10) YoeV, dme{n} so that v<w,.
Let us set w = {z, ,}..,, that is {w, .} is the diagonal subsequence of the se-
quences {2, .}, of (7); by (2) and (7) we have that

(11) v,<w Yo

Therefore by (10) and (11) it follows that v<w, Yo e V, that is w is & majo-
rant element of V.

Consequently, by lemma of Zorn, by (a) and (b) it follows that U has a
maximal element, that is 3 an infinite subsequence {y,} = of {z,}, so thab
it is impossible that o < u for w € U, that is, by (2), N{y, } = N{y.}, V infinite
subsequence {y, } of {y.}. This completes the proof of Lemma 1.
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2 — Let {x,} be an infinite sequence of B, without an infinite basic sub-
sequence, then: =3 an Y-overfilling subsequence {ya} of {w.}, with dimension
of Y>1.

Proof. TFirstly let us recall that ([2], see also [7] p. 128 and [9,] Table 2)

(12) {®,} denucleated < every infinite subsequence of {#,} has an infinite
basic subsequence .

Then, by (12) and (D), 3 an infinite subsequence {, } of {,} with dimen-
sion of N{w, }>1; consequently, by Lemma 1, 3 an infinite subsequence {ya}
of {®, } so that

(13) N{y,}=Y, V infinite subsequence {¥a,} of {y.}, with dimension
f ¥Y>1 "

Let us consider the sequence {y, -+ Y} of B/Y.
Suppose that 3 an infinite subsequence {y, } of {y.} so that

(14) T4+ YeNy, +7Y}, with 3+ 70,

Let {y,.} be an infinite subsequence of {y,,}, then 7 + ¥ ¥, + Y1 by (14)
and (D), but Y ¢ (4, ] Dy (13), hence it is easy to see thatb

(15) % e Yy,

Therefore by (15) ’EEN{_/,, ), but this is absurd because, by (13) and (14),
T+ Y#0 = ZT¢ N{y, }; hence (14) is not possible, that is {ya + Y} is
denucleated. Consequently, by (12), 3 an infinite subsequence of {4}, which
we call {y,} again, so that {y, - ¥} is basic, hence

(16) ﬂ ;>:=1 [?/’ﬂ + ?]n>m = {O} *

Suppose now that j G () mer Walusr, then 7 -+ Yene, 9.+ Yl,.,, conse-
quently, by (16), ¥ -+ Y = 0, that is 7€ Y, therefore

17 Nt Walisn € Y .

On the other hand, YV infinite subsequence {yn,} of {y.}, by (17) it is

ﬂ ;.:=1 [?/nk]k>m < ﬂ $=1[y7']7)>m c I_f *
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Bubt ¥ 2, [¥u, s DY (18), therefore
N Walsom= Y, V infinite subsequence {y,} of {y.}.

This, by (D,) and (13), completes the proof of Lemma 2.
Let us now recall a few theorems.

I* ([9],, theorem V). Let {y.} be an Y-overfilling sequence of B, with
dimension of Y = p>1, then: = 3 an infinite subscquence {’I/,,k} of {y,,} and
an M-basic sequence { Jk}kc_,l of Sz, with p—1<q<p, so that {y,} is convergent
of order ¢ to {Frfje:-

IT* ([9];, theorem IX). Let {y.} be an Y-overfilling sequence of B (also
convergent of infinite order) then: {y,} has an infinile minimal subsequence
< Y is an infinite codimensional subspace of [y.].

IIT% ([9]., lemma 1). Let {y.} be an infinite sequence of Sy, weakly and
not strongly convergent to ¥, then: =3 an infinite subseq@wnce {¥a,} of {¥n}
{G,} C € with lim &, =1, a basic sequence { Ynp With mf lyo] >0 and weakly

n~>c0

convergent to 0, so that ¥, = &J + Y, Yk

3 — Let {w,} be an Y-overfilling sequence of B, with dimension of Y >1,
then: = 3 an infinite subsequence {y,} of {@.}, an I-sequence {§}4., of Sp with
Y & [Fms, ] Ym and with codimension of [Fili., in Y <1, so that {y.} is con-
vergent of order q to {7.}.

Proof. If ¥ has finite dimension, the thesis immediately follows by
theorem I*. Therefore suppose that Y has infinite dimension, by theorem I*
3{fn} € Sp and an infinite subsequence {x,} of {z.}, so that

(18) Vo, G & span {y, 4o, moreover 3{#,.} cspan {Fi .15

n=1 7

80 that Hm (@, + P/ [@a, + Foell = Frm-
k—>c0
Let us set Y, = [#.,.]; if the codimension of Y, in Y is <1 the thesis is

proved, therefore suppose that the codimension is >1.
By (18) it follows that 3{7, .} C B so that

’ Hgl,m ” = ] Span {?/1 "}n=1 Span (¢ {./1 ‘n}n=1 ’
(19)

1nf‘ {”gl,m + y” ? :I/ € Spa'n {?71 n m-—1} > 3/4 Vm
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By (19), Ym, #1n = @ufim -+ Gy With §,, € span {#; 715 consequently, setting
Ot = T, + G [®n, + Do || /&, VE, Ly (18) it follows that (without losing of
generality we can suppose &, € &)

[Em_- + Vink O_menk + &mﬁmk + ]m ank + ﬁmkn

lim ———— =lim —
L—oo Ly, 'JI_ vmk“ k> ”‘xma’nk + O’m'vmk -jf" ,_/m ”a/nk + 'Umk” ”
. o n;. + ?Jmk %m, + 'vml y; m —
= lim (2 A T + Jm g 7775 + ./m = Yim-
lim (& oty o ] o gy o Gl =gy =
Therefore by (D,) and (19) we have that
(20) {w, } is infinitely convergent to {7 .},

where inf {|7,.. + y|; yespan {7}, > 3/4, Ym.

Let us consider the sequence {z, - Y. 1} of B/Y,; we supposed the codimension
of ¥, in ¥ >1, hence by hypothesis {, -+ Y.} is X,-overfilling, with dimen-
sion of X,>1. Therefore, by theorem I* 3{f,,};., C B and an infinite sub-
sequence {z, } of {wn, 1 so that p — 1<g< p<+ oo, where p is the dimension
of X,; moreover, Vm with 1<m<¢q,. Fom + Y ¢ span {7, . + Y, wr and
Vg + Y. 1} C span {7 + Y.}t so that

N (wn;_ + /D"mk) + ?
21 Ii
(21) i @y + Vo) + T

:I?Z,m + I—fl .

By (Dy), (20) and (21), setting #on = Fon/l|Fen] for 1<n<g, it follows that
{w,. } is infinitely convergent t0 {Finjn.; U {#on}ee,, Where

n=1
(22) Goon & [Gon] + DAL {Fonjriy, Y.
Proceeding as for (18), (19) and (20), by (22) it follows that

(23) {w,.} is infinitely convergent 0 {7 .}y Y {F2n}ney; moreover for
1<m<g, [a] -+ span {Fuafeey = [J12] + span {Fiafi., and inf {7 .+ y];
Y € [G1,2] + span {7, . Ja 21} > 3/4.

Now, if p (hence g) of (21) is finite, or if ¢ = - oo bub Yo= [{Fiu} U {Fon}]
has codimension <1 in Y, the thesis is proved; otherwise, if we consider the
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sequence {z, -+ Y,} of B/Y,, this sequence is X,-overfilling, with dimension
of X,>1, hence we proceed as for {”nk + Y 1} and so on.

Let us call {§,, i € I} the set of all the limit points that we can find by (20),
(23) and so omn.

We remark that, by construction, if ¢ > j®, |7+ ay;| > 3/4, Yo € €; more-
over |if; + off;| >1/4, Vae ¥, otherwise, if |7+ &7J:| < 1/4, it would be
|&| > 3[4 (because || = |7] =1), hence |§: - 7@ < 1/(4]2]) <1/3, ab-
surd because 7> j. Consequently

(24) Viel it is inf{|7; + o«ff;|,x €€ and jeI with i j}>1/4.

Now {7, i €I}c [x,], which is separable, hence 3 a sequence {z,} dense in [z,];
therefore, Vie I, 3 a natural number x(i) so that

(25) 17: + zua] <1/8, Viel.

On the other hand, by (24) and (25), it follows that

Vi,jel, with isj,
(26)
175 + 2ol > 17— F:l — 17: + 2aa| > 1[4 —1/8 =1/8.

By (25) and (26) we have a correspondence one to one between {7,,ie€l } and
a subsequence {z.,} of {z.}; that is {7;, €I} is a sequence {7}.

Let us now say that, in {7}, 7., <., if, in the construction of (20), (23)
and so on, we meet the limit point ¥,, before of 7, ,; therefore, by (Ds), (20), (23)
and so on, we have that

(27) {#:} is an I-sequence, with 7, ¢ [Jns,]s Y5 Ym 3 a subsequence {®Bn}
of {w,} and {v,.}cC [, ] 50 that Hm (Zpn-+vun)/|Bun -+ Vun] = Fm; moreover

N->00

Fm, < YJm, implies that {w, .} is a subsequence of (@ n}-

If the I-sequence {7} has not a last element let us set

n

(28) @m0 = Yn, Where k(n) is the element of {i};_,, so that ¥, < ¥ym for
1<i(z~ k(n)) <n, Yn.

Let us fix m, by (27) and (28) {y.},,, is & subsequence of {&,,},>.,,, therefore
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by (27) 3 {v,,} € {v,..} s0 that Lm (y, + v,/ |t Vp,]|= F.. Instead, if the

1700

I-sequence {7} has a last element j-, it is sufficient to set

(29) T= =Y, Yn.

kn

By (28) and (29) we have that

(30) 3 an infinite subsequence {y,} of {x,}, which is infinitely convergent
to the I-sequence {7} .

Suppose now that the codimension of [,] in ¥ is > 1, by hypothesis and by (30)
it would follow that the sequence {y,, e [gk]} of B/[#,] would be V—overﬁlling,
with dimension of ¥V > 1; therefore, by theorem I*, proceeding as for (21), (22)
and (23), {7} would not be the I-sequence of all the limit points.

Then the codimension of [¥,] in Y is <1, which completes the proof of
Lemma 3.

4 — Let {x,} be an Y-overfilling sequence of B, with [w,] infinite dimensional
subspace of B and with Y finite codimensional subspace of [®,], then: = {w,}
has an infinite subsequence {y,} which is elementary of 1% type.

Proof. By hypothesis 3 a subspace V of [x,] so that
(81) VNY=1{0}and V-+ Y = [x,], with dimension of V = p < -+ oo.
By (31) we have that
(32) @y =y + o, with v,V and §,€Y, VYn.

Suppose that 3 an infinite subsequence {w, } of {x,} so that

(33) v, (of (32))0 V.

V has finite dimension, hence by (32) and (33) 3o € §; and an infinite sub-
sequence {n;} of {n,} so that

(34) lim e Y lim Y eV,

E—roo ” Ty, — Ya'y ” k~>o0a ”,U" k”

By (34), V infinite subsequence {z,} of {z,.}, ¥ €[ n (@ ];>,, but thisis
absurd by (D,), because 7 ¢ ¥ by (31) and {@,n }is Y-overfilling. Therefore (33)
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is not possible, that is dn, € {n} so that v, = 0 for n>n,, hence by (32)
(35) {@tysn, C Y .

Now {#,},5n, is Y-overfilling, hence by (35), (D,), (D,) and by Lemma 3 we
have that

(36) 3 an infinite subsequence {y,} of {w,},-, Which is overfilling and
infinitely convergent to an I-sequence {7,}, with codimension of [7,] in

We remark that, by Lemma 3, {§,} is the I-sequence of all the limit points of {y,}.
Suppose by absurd that [7,] has codimension 1 in Y, hence 3% so that

(37) Y = [§.] + span {&}, with Z ¢ [7.].
By (36) and (37) we have that
(38) Yn = G + G, with 7, € [7.], Yn.

It is impossible that «, = 0 for an infinite subsequence {n,} of {n}, other-
wise [y, ]1C [F.] (by (88))c ¥ (by (37)) = [y.,] (by (36)); therefore In, € {n}
so that

(39) o, 7%= 0  for m>n,.
By (38) and (39) it follows that 3 an infinite subsequence {y, } of {y,} so that

. Yu'y — gn'k - (xn'kaj _ -
40 lim ———*. = lim —%— = § e span {Z} .
(40 O T = Gl — o o] 7 S50

By (36), (38) and (40) it follows that 7 is a limit point of {g/n.k}, absurd because
by (37) and (40) % ¢ [7,], while by Lemma 3 {7,} is the I-sequence of all the

limit points. Therefore (37) is not possible, that is [7,] = ¥ = [y.], which
completes the proof of Lemma 4.

Proof of Theorem 1. If {yn} has an infinite basie subsequence, we
have (¢) of Theorem I.

Suppose that (e) is not possible, then by Lemma 2 4 an infinite subsequence
of {.}, which we call {y,} again, that is Y-overfilling with dimension of ¥ >1.

If Y is a finite codimensional subspace of [y,] by Liemma 4, 3 an infinite
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subsequence {y, } of {y,}, which is elementary of 1* type, hence we have (a)
of Theorem 1.
Suppose now that

(41) {y.} is Y-overfilling, with ¥ of dimension p>1 and of infinite co-
dimension in [y,].

By Theorem IT* and (41) we have that 3{h,} c B’ and an infinite subsequence
of {y,}, which we call {y,} again, so that

(42) {Yu, b} is biorthogonal system, with {&,}c Y*(= {feB’; f(y) =0
VyeY}).

Let us consider the sequence {y, - Y } of B/ Y, by (41) and (Dy) this sequence
is denucleated, hence by (12) 3 an infinite subsequence of {y,}, which we call
{y.} again, so that {y, + Y} is basic. Therefore {y, + Y} is uniformly minimal,
consequently ([9], theorem VI) {y, -- Y} has property P.

Then, if ye[y,], 3 two infinite complementary subsequences {,,, } and

{m;} of {n}sothaty + ¥ €[y, + Y1+ [, + T1; that is Iy'e [y, ],5"€ [,0,]
and 7€ Y so that o =y -+ 9"+ 4 7; butb Yc[yn,,k] by (41), that is 9"+ §
€ [¥,7,], hence y € [y, ] 4 [¥a0, ], consequently
(43) {y.} has property P.
We have now two possibilities:
(A) Suppose that the dimension p of ¥ is > 1.
Then, by (41) and by Lemma 3, {y,} has an infinite subsequence, which

we call {y,} again, so that

(44) {yn} is convergent of order ¢ to an I-sequence {#,)°., of ¥, with
G & [F,s,); Ym and with codimension of [7,]2, in ¥<1.

Therefore we have two possible subcases:

Ay) {7:}.., is complete in Y; then by (41), (42) and (44) we have the
subease (b;) of (D,); hence by (43) we have (b) of Theorem I.

(As) [7:)., has codimension 1 in Y.

Then, in the Banach space BJ[7.], by (44) the sequence {y, - [7.]} is
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V-overfilling, with dimension of ¥V =1. Hence by (Di) {¥. -+ [Z:]} 18 wi-
thout denucleated subsequences, therefore by (12) (see also [1]or [8]; p. 171)
{y. + [:]} has not an infinite basic subsequence; consequently ([2], see also
[7] p. 128) 3 an infinite subsequence of {y,}, which we call {y.} again, so
that

(45) {(¥n + @)y + @]} is weakly convergent to §F -+ [#:], with
7 -+ [:] 5= 0, hence FU {#,}I_, is complete in ¥ .

On the other hand, by (44) and by hypothesis of (As) {(v. + [7:1)/ ¥ + [T}
has not convergent subsequences, because {37,;};:1 of (44) is the I-sequence of
all the limit points; therefore, by (45) and by Theorem III*, 3{&,} C %, {§.} C B
and an infinite subsequence of {y,}, which we call {y,} again, so that

(46) (yn + [?—/.L])/u?/ﬂ + [.,2/77:] H = &n(g + [?71»]) + (’!71;‘}‘ [371:]); Vn’ Wlt'h ]im ‘x_n = l ;

7> 00

moreover {#,-[7.]} is basic, weakly convergent to 0 and with inf |7, -+[7:1] >0 .

By (45) and (46) y,— ¥. € Y Vn; hence by (42) {§., h.} is a biorthogonal
system; moreover by (46) (] ., [?771 + [gk]]7l>m = {0}7 that is () oy [Falesnm € (7]
therefore ([9], theorem I) 3{w.} C [§:] so that {§, + v,} is M-basic; then, setting
Tn -+ 0o = 4., Vn, 3 an infinite subsequence of {y,}, which we call {y,} again,
with {y.} basic ([2], see also [7] p. 128); on the other hand #. + [7:]
=y 4 [#,], Vn, consequently by (46) we have that

Therefore, by (41), (42), (44), (45), (46) and (47), we have the subecase (b,)
of (D,); hence, by (43), we have (b) of Theorem I.

(B) Suppose that the dimension p of Y is =1.
We have again two possible subcases:

(By) {y./ly.]} has a convergent subsequence, hence by (41) and (42)
we have the subease (b,) of (D,), therefore by (43) we have (b) of Theorem I.

(Bo) {¥./lly»]} has not convergent subsequences; on the other hand by (41)
{ya} has not an infinite basic subsequence; consequently ([2], see also [7]
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P- 128) {y./ly.]} has a subsequence weakly convergent to 7 # 0; therefore,
by Theorem IIT*, we have the subcase (b,) of (D,); hence by (43) we have {b)

of Theorem I.
This completes the proof of Theorem I.

5 — Let {y,} be a sequence of B infinitely convergent to an I-sequence {7},
then: = 3{e,} c B* so that, Y{z,} c B with ||w, — .| < &, Yn, {w,} is infinitely
convergent to {i,}.

Proof. By hypothesis Vm I{v,,}c [4,,,] 50 that

(48) hm (4. + 0/ |9 + Vo] = Fon -

n->00

Let us now set

(49) &, == Min {&,,,; l<m<n}, where g,, = lyn + vuullfn, Yo and m.
By (49) {e.} c R, then let {,} c B so that

(50) Vo, — .l <&, Vm.

By (49) and (50) it follows that

”mn - ?/n” En Emn

5 l < < = 1" V’n (bll(l m W 1‘ (!}l m .
’ == ’ <
( ) ”Jl K ’“ ”yn L77“ ” ”-/7’ mn l”

Moreover, setting ., = |9, + Vunll/|#0 -+ Vna), by (51) it follows that

1 — :1< 1 — Hazn — yn” . ”yn + 7)mn” - “mn'—"yn“ P “wn + ,Umn” _

n ”:I/n + Vmn “ - “yn + 7)mn“ - ”y" + Vamn “ N

1 “’I/‘ﬂ + vmn“ + “w'n - :l/n“ . ”"Bn - yn“ ]

<+ =1 p e <] - =
Upn ”?/n + Vmn ” ”yn + vmn” w !
V n andm with m<n; therefore it is

(52) lm a,, =1, Vm.

N> 00
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On the other hand by (51) we have that

(53) Hm @, — yul/|9n + Vma] =0,  Vm.
n->0

Consequently by (48), (52) and (53) it follows that

. Z + v . & + Vmn
Hm e 22 e 1M gy e
n»mllmn + Vmn “ n~>0 " ”yn + 'vmn”
- yn + Vmn By — ?/n —
= lim a = P, YM .
,._m_"'"( la 4+ vuall [0 + Voinl ) = Yo

That is {z,} is infinitely convergent to {7}, which completes the proof of
Lemma 5.

Proof of Theorem II. It follows by Lemma 5 and by Theorem L.
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Summary

Una successione {y,} si dice « overfilling » se ogni sua sottosuccessione infinita é com-
pleta in [y,]. Ne sono stati costruiti esempi mediante le successiond infinitamente conver-
genti, ma era finora sconosciuta la struttura della generica successione overfilling. Si di-
mostra in questa Nota che gli esempi dati gics esauriscono la categoria di tali swceessioni :
precisamente, se {y,} & overfilling, ne esiste una sottosuccessione {Un,} infinitamente con-
vergente ad una successione {fj,} di punti limiti, con {#:} completa in [y,].

Inoltre sono messi in evidenza i due tipi elementari di successioni infinite, mediante ¢
quali sono costruile tutte le successioni prive di sottosuccessioni basiche. La nola termina
con un esame della stabilita di tali successioni elementari, per successiont abbastanza
« vicine ».

* ok ok
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