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Quadratic mean of entire functions

of sevefal complex variables (**)

1 - Let T' be the set of mappings f: ¢ — € (C is the complex plane and
(" is the cartesian product of n copies of ) such that the image under f of
an element z = (2,, 2, ..., 2,) of C* is

(1.1) f(oiy Zay eony ) = > Gy ey oy my P Fat oo B0,

M1y May sy My EN

with ¢/ = 4 oo (»7 is the polyradius of convergence of the multiple power
series defining f and + co = (+ oo,..., +00)); N is the set of natural
numbers 0,1, 2, ..., <a, o [my, ..., m, e Ny is a multiple sequence in C,
and z, = @, 4 iy, for » =1, 2, ..., n, where @,, y, € B (R is the field of reals).
Since the multiple power series defining f converges for each ze 07, f iy an
entire function of # complex variables. For simplicity, we shall take #n == 2.

On a closed polydise D: |2;]<7;, ¢ =1, 2, the quadratic mean function I,
of an entire function fe 7' is defined as

27 27

27[) ; Of f(ry exp[0,], r, exp[i0,])|2 49, db, ,

(1.2) Ioy(ryy 705 f) =

and some of its properties are studied in this paper.

2 —~ Theorem 1. Iy(ry,r;f) is an increasing funciion of v, r, and
s Toy g
log I, (11, 753 f) 48 a convex funciion of log (r,7y). -

(*) Indirizzo: Math. Dept., University of Jammu, Jammu 180001, J & K, India.
(**) Ricevuto: 13-VI-1979.
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Proof. In order to show that I, is an increasing function of »;7,, we ob-
tain the series representation of 7,. We have

2

4

F 17, exp 36,1, 7, oxp[6,1) |* 29, a6, .

0

Lo(rey 725 f) =

[ Y

27'6)

But

ey 20) 2= 2 U 777 €XD [$(mOy 4 n0y) 3 @, 178 exp [— i(ph; + ¢0,)]

m,neN D,QEN

= 2 |27 D @y 17 exp [(((m— p) 01+ (n— 0)0,)],

m,nEN MmynFEn,q

the series on the right-hand side being absolutely and uniformly convergent
for 0,, 0, € [0, 2z]. Integrating termwise over the interval [0, 277] with respect
to 0, and 0, we, therefore, get

27 2m
J I 1z, 2) |2 = 4m? z [ @, | 272720
0 o m,nEN
Hence
(2.1) Ly(ry, re; f) = z [am e im" 27» )
m,neN

The fact that I, is a steadily inereasing function of .7, now readily follows
from (2.1).
We now prove the convexity of logI,. In (2.1) putting ¥ = m, n and

r* =712, we get L(r,f) = > |az|*r®, from which the proof follows as in the
kEN
case of one variable which is similar to the proof of theorem 5.41 in [3].

Theorem. 2. If Iy(ri,r.; f®) is the quadratic mean function of (0/0z)
flen, 20), k=1, 2, then, for any r;, @ =1, 2, there is a number ry(r;, f) e R,
(R, is the set of positive reals), ¢ == &, such that

Ly(ryy 795 ) Jog Ly(ry, 145 f) 2 0 i
o2 7 log 7% o for re>ra(riy f) .

2.2)  La(ry, 725 ) >

Proof. We prove (2.2) for k = 1, since the proof for & = 2 is similar.
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Let &€ C be such that |&]|=r,. Then

(2.3) L(ry,y o5 f) = (27) ;fn Of' I 85 f(&y, 2) 120, 40,
1 7T Jlé1y2) —f(i— &6, ) |,
“@ard 2y |* by 46

1 j’n 2ng . |f(£s, ) | —[f(&2— &9, 32)1)2 a6, a0,

5-»0 lfla[

i (&1, 2) ]2+]f(§1_-£1 4, 2) [2_‘2 [f(&4, 22) ' [f(5—&10, )|

( ) 6—»0 (H 42

do, ao, .

But, from Schwarz’s inequality, we have
(2.4) j :f [f(&4y 22} | |f(E1— £, 0, 2,) ] 46, A6,
o (1]

<{ T [ 1#es, w)|*do, as, fflf(& £,0, 2)[* A0, A0} |

0

D'.._,xc

Using (2.4) in (2.3) we, therefore, get

. Loy 7or P — (L (1 — 7 O, 72 1))
L(ry, 723 f©)> };I_I,Iﬂl {( 2(71y 725 1)) ,(125( L — 710, 7353 1)) }2,

since all the infegrals are uniformly convergent so we can bring the limit
outside the integrals. We set

log ILy(ry, 723 f)

(2.5) g(rey 725 f) = log 7,

Then, for any value of #,, it follows, from Theorem 1, that g(r,, »,; f) is an
increasing function of », for v, >7)(r,, f). Therefore

) 70("1,"2 N (g e g, §)O s Dy ras 12
I(’uh:f()\hm{ r:—1,9) 2

50 710 '
R go(rora 2 (g — g0 §)0(rs, rai £)/2 polryras) 1 (1 — §)olre, rss F)f2
> lim {-* (ri=19) br=2 lim { ( ) %
>0 7y 5 7’3 §~»0 (S

— rilruris {g("l T2} f)}2 — Iy(ry, 725 1) {10g Iy(ry, 135 f)} N
r 2 22 r, log 7, ’

2
1

which proves the theorem.
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.3 — In this section we establish formulas, in terms of I,, for the order
and type of an entire function fe 7. The finite order p of f is defined ([1],
P. 219) as

: log log M(y, 725 f)
lim su =g.
(31) r;,rg—HS 10g ("‘1712) h
The lower limit in (3.1) is called the lower order of f and is denoted by
2e R, U{0}. In case g€ R, the type v R} U {0} (R is the set of extended
positive reals) of f is defined ([1], p. 223) as

. log M(ry, 725 /)
@2 AR R B

We shall call the lower limit in (3.2) the lower type of f and shall denote it
by »e R} U {0}.

Theorem 3. IffeT is an entive function of order p € R, U {0} and lower
order e R, U{0}, then

‘ . suploglog Iy(ri, 12 f) _ ¢
(3.3) rx,rlzl—Ig—m inf log (7117%) AT

If, however, f is of order o € R, type v e Ry U{0} and lower type v e R} U {0},
then

. sSup 10g 12(7.17 T3 f) 27
1 log Io(ry, 723 f) _ 27
(3.4) - rsl_n;i_m inf 7.§ _){_ ,rg 21}

Proof. It follows, from the definition of I,, that
(3.5) Io(re, 123 ) < (ﬂl[(Tl; Va3 ]t))z y

where M is the maximum modulus function of f on D. Also, it follows, from
(2.1), that

(3.6) Lo(rs, 105 1) > (ulr, 725 1))*

where x is the maximum term in the double series defining . From (3.5) and
(3.68), we get

(3.7) (ulrsy 723 1)) < Lo, 75 1) < (M(ray 725 1)) -
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But ([1], p. 219) for functions of finite order 0y a8 7y, ¥y — - o0,

(3.8) log pu(ry, 7o; f)~log M(ry, 743 f) .

Hence, from (3.7) and (3.8), we have

(3.9) log (Iy(ry, 743 i~log M(ry, 73 f),

as 7, s — -+ co. The results in (3.3) and (3.4) now follow from (3.9) and the
definition of g, 4, 7, and ».

Dzrbasyan, M. M. [2] has defined another order or€ It with respect to
the variable z, of an entire function fe T as

log log M(ry, 13; f)

(3.10) lim sup lim sup

= Ok
4> 7>t 1Og T

where j, k =1,2 and j== k. We also establish two formulas for o in terms
of I, in the next theorem.

Theorem 4. If feT is an entire function of order g, R_, then

log 10g Iy(ry, 723 f) _

3.11 lim sup lim su .
( ) ry—tw P rk—>+°°p log 7y, o
= lim sup lim sup log (7'1: ng)(rly o5 (1, 125 f)) ,
rpb® e log 7y

where §, k= 1,2 and j 5=k, and I® = (3/0r,) Io(ry, 723 f).

Proof. The first equality in (3.11) follows from (3.9) and (3.10). We,
therefore, prove the second equality in (3.11), but for % = 1, since the proof
for I = 2 is similar. Since, in view of Theorem 1 y log 1, is an inecreasing convex
function of log r,, for some 7, € B, U {0}, we can write log I, as

"1 (0/0wmy) Ly(wy, 7s;
log I,(ry, 73 f) =10g12(737 725 ) + ~£ ( /Z()w (T ;) D

dax,

IP (1, 105 1)

<log Llrty s )+ g
2\f1y T2y
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Hence, in view of the first equality in (3.11),

(3.12) o:< lim sup lim sup

log (7'1 Igl) (71s 725 )] Lo(ry, 103 f))
o>+ P - log 7

Also

log I,(271, 725 f) = log Ly(ry, m; f) + |

Igl) Pt
G, g, 0375 1)
Lo(ry, 123 f)

& (8]0wy) Iy(wy, 195 f)

" Lo(@y, 195 f)

and hence, again by the first equality in (3.11),

(3.13) 0:> lim sup lim sup

log (7'1 (1(21’ (11, 75 F)[Lo(7y, 05 f)) )
rg—>t 1> log "1

Combining (3.12) and (3.13), we get the desired result.

(3.14) lim sup lim sup

1]

(2]

(31

Corollary 1. Under the hypotheses of Theorem 4

log (1 (Ly(ry, 725 1)/ Ly(ry, 145 )2

r3—>+o rp—>+t@ log Ty

>0 .

The proof follows from (2.2) in view of (3.9) and (3.10).
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