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MARCO GRANDIS (%)

Distributive unions

in semilattices and in inverse symmetrizations (**)

Introduction

In this work distributive unions in semilatbices are studied and used to
characterize the exactness of short sequences and functors, in the context of
distributive exact categories.

We recall that subquotients behave well in distributive exact categories:
in this case, and only in this one, canonical isomorphisms are composable,
Le. form a transitive system [6]57; any exact category & has an associated
distributive exact category &*, called the distributive expamsion of & [53-

Now, a distributive exact category Z has two interesting symmetrizations:
the well-known embedding 2 — 2° in the category of correspondences (or
relations) of 2 [4], [3), [5]:, and another embedding & — 9° = 2°|®, where
@ is a congruence of 29 consistent with the involution [5];.

If 4 is an object of & (hence of 22 and 2°), denote by M(A), Mo(A)
and Mg(4) the ordered sets of subobjects of A with regard to @, 92 and 9°
respectively: the elements of M,(4) are the subquotients of A4, while those
of Mo(A) are the classes of canonically isomorphic subquotients of A. M ol4)
is an (intersection) semilattice; its unions (not always existing) constitute a
rather useless notion, because they are not preserved by functors obtained
by ©-symmetrization of exact ones. The « good » notion (and a useful one,
as it will be shown in future works) appears to be distributive union (i.e. & union
which is distributive with regard to binary intersection): the latter is preserved
by exact functors, and yields charaeterizations of exactness (6.1, 6.3).

(*) Indirizzo: Istituto di Matematica, Universitd, Via L. B. Alberti, 4, 16132 Genova,
Italy.
(**) Lavoro eseguito nell’ambito del G.N.8.A.G.A. (C.N.R.). — Ricevuto: 10-IV-1979.
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In No. 1 we recall the definition of distributive union in a semilattice,
which goes back (at least) to Macneille [6]; a disjoint distributive union is
called a partition. No. 2 introduces the category of partition semilattices, or
p-semilattices: the objects are those semilattices with zero such that, if a, <a,
then a, belongs to a finite partition of a; the morphisms are the mappings
preserving zero, as well as finite intersections and finite partitions (or, equi-
valently, finite distributive unions).

In No. 3 we deal with a functor from distributive lattices to p-semilattices,
denoted by X +— X, f+—f. No. 4 shows that, if X c S is a lattice of parts,
X is canonically isomorphic to X = {# — @' |, ' € X}c B, while finite dis-
tributive unions in X correspond to (set-theoretical) unions in BS.

Numbers 5 and 6 are concerned with the study of inverse symmetrizations
of distributive exact categories: a semilattice M g(4) is isomorphic to (M (4)) -,
hence it is a p-semilattice; the connections between distributive unions in
semilattices Mgo(4) and exactness of short sequences or functors are con-
sidered in No. 6.

Numbers 1-4 can probably be of some use in the general theory of semi-
lattices, and are independent of symmefrization theory.

1 - Distributive unions in semilattices

We recall here the notion of distributive union in a semilattice (see [6],
def. 3.10 and th. 6.3, 6.5).

1.1 Definition. Let I be a semilattice (i.e. a commutative idempotent
semigroup, provided with the canonical order: a <b iff a = ab); we say that
a e I is the distributive union of the family (a.),, of elements of ¥ if

1) a; <a for any iel,
(2) if be E, ab is the union of (a;b),, in E.

In particular, ¢ is the union of (a;): take b = ¢ in (2); if E has 1, condi-
tion (1) is superfluous: take b =1 in (2). Bach of the following conditions
is trivially equivalent to (2)

(2y if b <e in I, then b is the mnion of (a:b),,,
(2)" it a;b <c¢ in B (iel), then ab <c.

If B is a 0-semilattice, we say that a family (a,),, in ¥ is disjoint if
(3) a;a; =0 for any ¢, jel, i#j.

When (1), (2), (3) hold we say that « is the disjoint distributive union of
(a;), or equivalently that (a;) is a partition of a.
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We also use the following (metatheorical) expressions: a = |Ja; is a dis-
tributive union, or a disjoint distributive union (a partition).

1.2 Examples. In a distributive lattice all finite unions are distribu-
tive; in a completely distributive lattice all unions are distributive.

Let B cWBZ be the semilattice of intervals of integers; then in H, {0}
U {2} = {0, 1, 2} is a non-distributive union (intersect by {1}); it is obvious,
and will be shown in a more general context in 4.2, that distributive unions
in B coincide with unions in WZ (belonging to E).

Distributive unions need not be preserved by homomorphisms of semilat-
tices: if B’ is the subsemilattice of F (see the preceding example) having
elements: 0, a = {0}, b = {1}, ¢ ={0, 1, 2, 3}, then ¢ = a U b is a distributive
union in X', non preserved by the embedding E'— Z.

1.3 Obvious properties for distributive unions in a semilattice & (resp.
for partions in a O-semilattice I):
(a) distributive unions (resp. partitions) are associative: if ¢ = |J«; and
a; = Ja, (iel) are distributive unions (resp. partitions) then am: Uay
(4 er j,J"éeI) is a digtributive union (resp. partition);

(b) remark, however, the following fact; if a = bU e U d (distributive
or simple union), one cannot conclude a = (b U ¢)U d unless it is already
known that b and ¢ have union in ¥#; consequently, binary distributive unions
are not «sufficient to study» finite distributive unions in I/ (e.g. see the
proof of 2.2);

(¢) the product of F is distributive with regard to distributive unions
(resp. partitions): if @ = (Ja, and b = [Jb, are distributive unions (resp. par-
titions) in E, then ab = {J a,b = {J ab; = | a;b; are three distributive unions
(resp. partitions);

(A) if ¢ = Ua, is a distributive union and «; <a, <a for any 4, then
a = Ja; is again a distributive union (use LI (2)");

(e) repeated elements in a distributive union can be erased;

(f) any intersection in ¥ is distributive with regard to the product.

1.4 Lemma. An embedding (i.e. one-to-one homomorphism) of semilattices
f: B — B’ reflects order, product and distributive wnions.
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Proof. It is obvious that f reflects the product, hence also the order.
Let a, a;€ B (ie€l) and fe be the distributive union of (fa,); then a; <a
(f reflects the order) and, using L1 (2), if a;b <c¢in E (i €I) then (fa;)-(fb)
= f(a;b) <{fe¢ for any i, therefore (fa)(fb) <fe¢ and ab <e.

2 « Partition semilattices

2.1 Definition. A partition semilattice (or p-semilattice) will be a 0-semi-
lattice Z satisfying

(1) if ay <« in B, there exists a finite partition ay, a4, ..., ¢, of a.

If B has an identity 1, it is sufficient to require property (1) for
a = 1. Any relatively complemented distributive 0-lattice is a p-semilattice
(ao <a gives the partition @ = a,\ (@ — a,)); in particular this holds for
any lattice WS (parts of a set §). Here we ave interested in p-semilattices
arising from distributive lattices (No. 3): in this case property (1) is always
satisfied with n = 2 (see 3.7 (2)), but the theory here developped would not
have any essential simplification by this assumption.

2.2 Proposition. If f: B — B is a homomorphism of 0-semilattices,
the following conditions are equivalent:
(a) B is a p-semilattice, and | preserves finite distributive unions;
(b) B is o p-semilattice, and | preserves finite partitions;
(¢) if ay <a in B, there emists a finite partitions ay, @y, ..., ¢, of « which
is preserved by | (i.e. (fa))img 1, 0 18 @ partition of fa in E').

e}

Proof. As (a)=(b) = (c) is obvious, we need only to prove that (c) =-(a).
It is not sufficient to consider binary distributive unions (1.3(b)), therefore
we proceed by induction: unary distributive unions being trivially preserved,
suppose that m-ary distributive unions are preserved and take

1) a = U a, U ... \Ua, (distributive union) .
As a, <a, we have by (¢) a finite family by, ..., b,,€ E such that
(2) = a,Jb U .. Ub, (partition preserved by 7).

By (1) and (2)

(3) b;=ab; = Ja;b; = Ja;b; (j=1,2, ..., m)

i==0 fe=1
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is an m-ary distributive union (1.3 (¢)), hence preserved by f

(4) 7b; = Ufa;b;) (distributive union) .

i=1

Therefore, using (2), (4) and properties 1.3 (a), (d), (e), we have the following
distributive unions

n

(B)  fa=1ayU fby .U b = fag U (Uf(@:b) U ... U (Uf(asb)

fe=]1 ge=)

— 4,0 (Ute) U ... U (Uta) = Ufe, .

=] =1 i=0

2.3 Let F and E' be p-semilattices; a homomorphism of p-semilattices (or
p-homomorphism) f: B — E' will be a homomorphism of 0-semilattices pre-
serving finite distributive unions (or, equivalently, finite partitions (2.2)).

Partition semilattices and their homomorphisms yield a subcategory of
the category of 0O-semilattices; we write the former as [p-semilattices].

2.4 Remark. Proposition 2.2 suggests that in a p-semilattice F it should
be sufficient to consider finite partitions instead of finite distributive unions;
actually, if

1) a=a,Ua..Ua, (distributive union)

it is possible (see later on) to « rewrite » a as

(2) a="5bUbU..Ub, (partition)

so that, for any ¢=1, ..., m and any j=1,...,n

(3) either a;b, = 0 or a;b;=b;

hence any a, is the disjoint distributive union of those b, such that b; < a;
(and any b, precedes some a;); a partition (2), satisfying condition (3), can
be said subordered to the distributive union (1). It can be obtained as follows:

as a; <@, there are m finite partitions of a (which we can always suppose to
have the same index set, possibly by introducing null terms)

»
(4) a=ay, Gy = Q; (¢=1,2,..,m)
k=1
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and, the product being distributive with regard to partitions (1.3 (c)), we
have the partition

»

» 7
(5) a4 = 4™ = (U a’lk)'(U a‘zk) e (Ua’mk) = L_Jaflkla“‘.’k2 “ee amkm (ki:ly 2’ cey ]0)

k=1 k=1 k=1
which solves our problem, as a.(dsx - dar, - Omre,) is zero if k; > 1 and ay, ... Gy,
otherwise.
3 - From distributive lattices to partition semilattices
‘We define here the canonical functor
" [distributive lattices] — [p-semilattices] .

3.1 If X is a distributive lattice, the set X, of decreasing pairs of ele-
ments of X can be provided with the following product

oy (@, &), ¥) = (@ N (y Ua), & Uy Na))
=(enyua, @ vy)na)

which is associative ([5],, n. 3.14). Moreover the semigroup (X, [J) is idem-
potent and left inverse (1); as an idempotent semigroup, it has a canonical
preorder (z, ') @ (¥, ¥') (5], n. 1.7), characterized by the following equi-
valent properties ’

(2) (x, @) = (, @) O @ 9,
3) r<z' Uy, rNy <z,
(4) sy < Uy, rNy<s Ny,

while the associated congruence (z, ') ® (y, ¥’} is characterized by the equi-
valent conditions

(8) (z, 2"y d (v, ¥) d (=, @',

(6) sUy =a0Uy, zNy =z Ny,

(1) For an idempotent semigroup this means the following identity: o«[1flla
= a[] B [7]; left inverse idempotent semigroups are more usually called left reqular
bands. ' ’
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and satisfies
(7) (OB @B (o, f € Xo)

3.2 The quotient X = X,/@ is therefore a semilattice, whose canonical
order (<) coincides with the one induced by the preorder of X,.

If (2, #') € X,, we write 2|z’ its image in X under the canonical projec-
tion. X is a O-semilattice, with

(1) 0=ala (for any x e X) (2)

and it will be shown (3.7) that it is a p-semilattice.
Remark also that, if (z, 2') € X,

(2) zla'=0 implies o = &'
for (@, #')® (4, #) gives s = Nna=2a Nno=2a (3.1(6)).

3.3 If X has 0, there is a canonical embedding of 0-semilattices

(1) iv: X - X, z > 2|0
and
(2) (ix(®) = yly") iff (@Uy =y and aNy =0)

the right hand condition saying that 2 is the relative complement of %' with
regard to y (notations y — g'). Therefore iy: X — X is an isomorphism of semi-
lattices iff X is relatively complemented; in such a case the reciprocal iso-
morphism is
(3) i7: XX, wlo' sz —a .

Instead, if X has 1, there is an embedding of semilattices
(4) jxt X* = X, 1o,
where X* is the opposite lattice of X. If X has both 0 and 1, X has an iden-
tity: 1]0.

(%) This would fail for X = §; therefore we agree that, in this case, X = {0}.
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3.4 Now, if /: X — Y is a homomorphism of distributive lattices, define
fo: Xo—> Y, as

(1) 7‘2(@'7 m,) == (f’l}y fm,) (wy ml) € X2 ’

f» respects [product, hence U and P, therefore it induces a homomorphism
of 0-semilattices

(2) fi X — 7, x|o' — folfd
and we have a functor from distributive lattices to O-semilattices.
3.5 Lemma. Let X be o distributive lattice, a,be X, b=y|y'. Then
(1) (a@b) ff (Hr,2'eX: a=als and y' <o’ <z <y).
Proof. If e db, and a = 2|2/, take
(2) (@, )= (g, ¥V Ok )= ([N (VY ¥ UENY)

so that w|a’ = (y |y )(z]e') = #]s' = a and y' <o’ <& <y; conversely if such
a pair (z, ') exists, a b because

(3) @2\ OWy)=@E0Gua), s Ul Nae) = ().
3.6 Lemma. If X is a distributive lattice and
(1) By < By < oor < By

is a finite chain of clements of X, then in X the element m,|x, is given by the fol-
lowing disjoint distributive union

(2) B |0 = (@ | Bny) U oo U (@2]@g) U (2] 25) -

Proof. It is sufficient to prove the fact for n = 2.
Then

(3) (@2 | @1) * (@, |) = (wz N (@, U wl)) l(ah U (@ N wz)) =mijo =0
INOTeOVer %y |%y, € |®y <y |wy by 3.5, and if x|y, @ |w, <y|y' then (3.1)

(4) <YV, ; B OV Y <@ B <Y U Ty 5. Ty Y <@y
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hence

(5) LY J 0y <Y &y BN Y <T NY <@y

that is a,|@, <y|y’; this proves that =], is the disjoint union of |, and

o |wy; as regards the distributivity, take yl|y’ <@.|®, and assume that z,
<y' <y <, (it is possible by 3.5); then

(6) Wy @lo) = (y D (@ Uy [y V@) =y|({y U @ny),
(1) @y @ @) = (¥ N (@ U y) [y Y @ny) = (¥ VY (@ny)ly .

By the preceding argument, y |y’ is the union of the elements (6) and (7).

3.7 Theorem. If X is a distributive lattice, X is « p-semilattice; if
f: X = Y is a homomorphism of distributive lattices, f: X — ¥ is a p-homo-
morphism. In other words, the functor " defined in 3.1,3.4 can be regarded
as a functor

(1) ~: [distributive lattices] — [p-semilattices] .
Moveover if f is one-to-one (resp. onto), so is f.

Proof. Let X be a distributive lattice, and #|a’ <y|y' in X; then we
may suppose that y' <2’ <z <y (3.5), so that by 3.6

(2) yly' = (i) U (@le) U (@' |y), partition in X .

Now, if f: X — ¥ is a homomorphism of distributive lattices, it is sufficient
to use criterium 2.2 (¢) to verify that f: X — ¥ is a p-homorphism: if z|a’ <
<y ly in X, the partition (2) is preserved by f (use again 3.6)

(3) fylty' = (fylfe) O (fa|fs") U (fa'|fy") , partition in ¥ .

As regards the last assertion, suppose that f is one-to-one, and Ffla)y = f(b),
with a,be X; take ¢=ab <a, c=2ala', a=y|y’ with y' <z’ <z <y (3.5);
hence (3) holds, and fy|fy'= fa = fe = fx|fx': it follows that fa'|fy’= 0 and
fylfe =0, that is fa'==fy' and fy=7Ffz (3.2 (2)); hence #'=19', =1y and
¢==q; in the same way ¢=>0.

Lagt, suppose that f is onto, and take b= yl|y'e Y: then there exist
x, '€ X such that fo =y, fo' =y’ and f(&|z Na') = fo|fz’' = b.
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4 - Lattices of parts; consecutive partitions

Here § is a set, and B8 the (completely distributive) lattice of its parts;
unions in WS (i.e. set-theoretical unions) are always distributive, while parti-
tions are « usual partitions ».

4.1 Proposition. Let X be a sublattice of BS; then there is an embedding
of p-semilattices

(1) i X > 8BS, @z > v—

so that X is isomorphic to X = {w— &' |w, &’ € X}, a sub-p-semilattice of BS.

Proof. One can prove by direct (and tedious) computation that ¢y is well
defined, one-to-one and preserves product and finite distributive unions; the
following argument is far quicker.

Take f: X — BS the natural embedding; then f X > (PS)” is an ems
bedding of p-semilattices (3.7) and (#8)” is isomorphic to RS (3.3) under

(2) i PS> (W), x> |0,
(3) i1 (PS) "= WS, wlo >z — o .

By composing f and (3) one gets just the map (1), whieh is therefore an
embedding of p-semilattices.

4.2 Corollary. In the swme hypothesis, a is the distributive union of a
finite family (a;) in X iff x(a;) is the (set-theoretical) union of (ix(a,)) in BS.
If X is stable for unrestricted unions in BS or contains all subsels {p}, for p € S,
the same holds for infinite families; in the contrary, counter-examples (for infinile
families) can be given.

Proof. By 4.1, iy preserves finite distributive unions, by 1.4 it reflects
all distributive unions.

As regards preservation in the infinite case, let @ be the distributive union
of a family (a,) in X (isomorphic to X), and «' the union of the same family
in 98: obviously a' c a. Now, if X is stable for unions in BS, o’ € X hence
a' da (for a' D a, for any i) and «'= a; suppose instead that X contains all
point-like subsets of S: if 4’5~ a, take pea— o and b :{p}eX, so that
bNa;cla—a')N a, =9 for any ¢, which is absurd because b = b N ¢ is the
union of all bN a,.
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Last, we give the following counter-example for preservation of infinite
distributive unions, in a ecase in which none of two preceding assumptions
holds. X is the sublattice of BR having for elements the closed left-unbounded
intervals ]— oo, «]; X the subsemilattice of R consisting of bounded left-open
intervals Ja, f], < f in R. Then the family 10, 8] (0 < f < 1) has distributive
union 0, 1] in X, while it has union 10, 1[ in BR.

4.3 As any distributive lattice X is isomorphic to a sublattice of a suit-
able B8 [2], any p-semilattice associated to a distributive lattice has represen-
tations of kind 4.1 (1).

4.4 Let X be a distributive lattice; lemma 3.6 has brought to evidence
the existence of a peculiar type of partitions (3.6 (2)); so we say that a finite
ordered family a,, as, ..., a, is a consecutive partition of a e X if there exists
a chain o, <2, <... <2, in X such that

(1) = | @, , ;= 2% 4 (E=1,2,..,m).

It can be shown thab consecutive partitions are associative, and distributive
with regard to the product.

4.5 TRemark however that consecutive partitions arve confined to p-semi-
lattices associated to (given) distributive laitices. Moreover there exist (in some
semilattice X) partitions which cannot be ordered into consecutive ones as

shown by the following example. Take § = Z3, the set of triples of integers
with the product order

€] (m, n, B)<<{(m', n', k') it m<w/, n<ga’, <k
and X c RS the (complete) sublattice of closed subsets in the order topology
(2) zelX ff (xewx, BES, < = feE).

Then X = {# - ' |2, ' € X} c BS is a p-semilattice (isomorphic to X: 4.1)
characterized by

(3) zeX it (¢, ye2 feS, a<f<y = fer).

Now a ={(0, 0, 1), (1, 0, 1)} and b = {(1, 0, 0), (0, 1, 1)} belong to X (by (3)),
and so does their union (in ®S) ¢: hence ¢ = a U b is a partition in X, but
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there are no closed subsets @, @y, 3, € X such that either (4) or (5) holds
(4) € = Ls— &y, a4 = By — T , b= o,— 2,
(5) C = Ty— Ty, b=um— m, A= By— Ty ,

actually in the first case (1, 0, 0)< (1, 0, 1) € a C a4, hence (1, 0, 0) € #,, whichis
absurd for (1, 0, 0) € b = @, — a4; in the second case (0, 0, 1)< (0, 1,1)ebcay
henee (0, 0, 1) e, while it is in ¢ = @, — @,.

5 « Distributive unions of subquotients in exact distributive categories

The two last numbers (5 and 6) concern the study of inverse symmetri-
zations of distributive exact categories: partitions are shown to be (6.1 6.3)
a good «surrogate » for exactness in these symmetrizations; some familiarity
with preceding works [5];,. is supposed.

5.1 Lt o be an inverse category (provided with its canonical involu-
tion) and A an object of o : the set A (A) = A4 ,(4) of projections of 4 is a
semilattice with regard to composition, and its domination {d coinecides with
the canonical order of semilattices. For any « e (A, B) the transfer map-

pings ([5);, §2.17)

(1) ot Hold) = G(B), on(e) = aed ,
(2) of: A W(B)Y = (4), of () = dnoe = Gu(n) ,

respect product ([5],, § 4.7) and order; we remark also that
(3) abo(e) = &loc e &) oo = (fox) & (dor) = & (1) .

5.2 Proposition. If X s an inverse calegory and o€ A (A, B), the
transfer mapping 5.1 (1) preserves (unvestricted) distributive unions; if « is monic,
5.1 (1) reflecis them as well.

Proof. Let ¢ be the distributive union of (¢;) in £(4); we verify con-
dition 1.1 (2)" on oy(e) and («g(e)): let n, & € 4(B) be such that (&) 9 <&

for any 4; then

1) «n(f) > ocﬂ((ocn(ai)'n) = (aPoage) (et ) = &; (wBl)-afy = g;(eqn)
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for any %; hence o®({) > ¢ (xv7), and
(2) £> Llagl) = aglem ) > agn(e(emn))

= (o) (¢ 087) = (tg &) (et 1) = (2 €)7] -

If o is monic, ar1l =1 and afe, e =¢ for any e 4(4), therefore our thesis
follows from oo = (§), preserving distributive unions.

5.3 Let £ be a distributive exact category, 4 a Z-object and X = M (4)
the distributive lattice of subobjects of A with regard to 2; for brevity we
write M ,(4) and Mo(4) the sets of subobjects of 4 with regard to the sym-
metrized categories # = 99 and A = 2°; the last one is inverse.

By [5];, §3.13, there are isomorphisms of sets with operation

(1) (X27 D) - (MO(A)y DM) - (jKO(A% D) 3
(2) (my,n) — mn=pu i,

hence the three arve left-inverse idempotent semigroups, and by quotienta-
tion with regard to @ (&, in My(A)) one gets two canonieal isomorphisms
of O-semilattices (actually p-semilattices by 3.7)

(3) X = Mo(A) — A o(4) .

We shall often identify (M (A))A and Mq(4) via the first isomorphism of (3);
consequently we write m|n = (m/n)- the @,-class of m/ne My(4).

54 If wed(4, B), it is easy to verify that the canonical isomorphism
in 5.3 (3) «translates » the mapping

(1) o Mo(d) = Mo(B), () = 1m o

into ay: H'o(A) = A o(B); thus, by 5.2, ay preserves (also infinite) distributive
unions, and refleets them if « is moniec.

5.5 Corollary. If aeX’ (A, B) is monic, and u, u; € Mg(A) (i€ I) then
w18 the distributive union of (u;) in Mo(A) #ff onlp) = im (o) is the distribu-
tive union of (ocM(,ui)) in Mg(B).
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6 - Partitions and exaetness

6.1 Theorem. In the distributive exact category 2 the short sequence

(1) s 4

—> .

is of order two (i.e. pm = 0) iff
(2) mNpg=0 mn Mg(A)
while it is ewact (im m = ker p) iff

(3) ly=muUP, partition tn Mo(4) .

Proof. We may suppose that m is a subobject of A, and p a quotient;
the condition (2) is equivalent to (Pp)(mm) = 0 in 2° (use the second iso-
morphism of 5.3 (3)), hence to pm = 0 in 2° (or in 2).

As regards the exactness, suppose that pm = 0. If p = coker m = 1/m)~
then § = 1/m and (3) holds by 3.6. Conversely, lot (3) be satisfied; as pm = 0,
m <y kerp = m' and we consider y = m'|me My(A4)

4) m O p = (my (m'[m)) = (mfm)~ =0,
(5) PNp = (@/m") Oy (mfm))~ = (m/[m’)~= 0,
(6) p=L0p=mNpu@nu =0,

hence m = m' = ker p.

6.2 Let 2, & be distributive exact categories and f: ¥ — & a zero-pre-
serving functor; we recall that f is an O-funcbor (i.e. has an involution-pre-
serving extension 7°: 9° — &%) iff it is exact ([5];, § 6.15), while it is a
O-functor iff it preserves monics, epics, pullbacks of monies and pushout of
epics ([1], th. 2.4); any O-functor is also a O-functor (this results also, in a
more direct way, from [5];, §1.6). The « gap» between these two notions is
characterized by the following statement.

6.3 Theorem. Let f: 2 — & be a O-funclor between distributive exvact
categories; for any A object of 2, write

(1) foo M(A) — M(f4), m — im (fm) (%) ,
@) 1O Mo(A) — Mo(fA), p o> im (%) (9,

2') Ho(A) = HUFA), e 1%  (F =% A= &°).

(®) f and f© preserve mondcs, and not subobjects, generally.
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The following conditions are equivalent:
(a) f s ewact;
(b) for any A in 2@
(3) flm|n) = (fam)|(fan);

(e) for any A in D, the mapping (2) is a p-homomorphism;

() the same for (2).

When these conditions are satisfied, all f, are lattice homomorphisms and
1= (10", according to (3).

Proof. The conditions (¢) and (c)’ are trivially equivalent, by the second
isomorphism in 5.3 (3).

(@) = (b). By [5], §2.11.

(b) =>(e¢). It is sufficient to prove that each mapping f, is a lattice
homomorphism, so that f® = (f,)” and the conclusion follows from 3.7.
We write here
(4) f.: P(4) — P(f4), f.(p) = coim (fp)
the analogous mapping with regard to quotients in 2 and &. By 6.2, both
f1 and f, preserve intersections (pullbacks of monies and pushouts of epics);

moreover, if m, n € M(A) and p = cokm = (1/m)”, g= cok n = (1/n)" are the
corresponding quotients of A, by using the property (3)

Ufabm O m) = 12(1f(m U m)) = 1((1fm) O (1)) = 195 A )
=1 n97) = (fup n )" = (fip) N fi0)”
= f2(B) N 2@ = 12(1/m) O f2A ) = 1ffam) O (1/fan) = 1/((fam) U (fum)) .
(¢) = (a). Short exact sequences must be preserved by 6.1.

6.4 Non-distributive unions in semilattices Mg(A) are probably useless.
Actually, in situation 6.1 (1), the eondition

(1) ly=muU P (union in Mg(4))

25
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can be strietly weaker than 6.1 (3), and in some case trivial (satisfied for all
m+0 and p==0); for example, take ¥ the category of abelian groups,
9= %* and A = (G, X) where G is an abelian group and X a chain of
subobjects of G containing 0 and 1.

It is not difficult to show that exact functors between distributive exact
categories (more exactly: their @-symmetrized functors) generally do not pre-
serve simple unions of @-subquotients.
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Sunto

Si studiano le unioni distributive (rispetto all’iniersezione) nei semiveticoli. Nell’am-
bito delle categorie esatte distributive, tali unioni vengono ulilizzate per caratterizzare Uesat-
tezea delle sequenze corte e dei funiori.



