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CESARE DAVINI (%)

On some special theories

in constrained oriented media (*%)

Introduction

The introduction in Mechanics of a theory for oriented materials may
be regarded both an a refinement of the description offered by the classical
continuum model and as an attempt to cover such subjects as rods and shells
unitarily. In some sense, it plays to the classical theory the same role as that
did to the previous schemes (1). Its distinctive feature consists in acecounting
for some granular aspects of the matter keeping the theory all the analytical
advantages of the continuum point of view. This is the course most of the
applications have been developed along [8] and also the starting point of
many approaches to consistent mechanical theories of oriented materials 21,
(9], [3], [1),. Many approaches are different and consider different kinematical
models. In [1], Capriz- Podio Guidugli suggested a criterion to order the
various contributions on the subject. Noticing that many proposed models
can be deduced from a general one, when endowed with suitable internal con-
straints, they embedded some special cases into the general frame of [1], and
adapted to the purpose the theory of internal constraints given in [6]. Here

(*) Indirizzo: Istituto di Elaborazione della Informazione C.N.R. Pisa, Facoltd di
Ingegneria, Universitd, 56100 Pisa, Italy.

(**) Ricevuto: 27-I11-1979.

(*) More explicitly, the classical continuum theory provided a finer description
than rods and shells and was general enough to include them as special cases. To give
some classical examples, we remind St. Venant’s special solution for beams, Love's
approach to plates and the asymptotie expansions proposed in order to obtain the
shell theory from the three-dimensional equations of elasticity (see Green-Zerna [5],
Chap. 16).
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we carry on that idea and consider, among others, the cases of the materials
of second grade [12], the liquid erystals [2] and the director theory of sur-
faces [4]. Besides unifying the matter, this way of looking at the subject helps
a systematic criterium to formulate some of the basic axioms in those special
theories. Here we refer to the peculiar forms of equations of micromomentum
and generalized moment of momentum in those theories. Regarding them as
constrained, these equations plainly follow from a version of the momentum
equation and from constitutive assumptions that look familiar under the formal
view when they are given for the three-dimensional oriented body (sect. 3).
The presence, in the constrained scheme, of reactions and their charac-
terization offer a satisfying understanding of the indeterminacies and of the
assumptions about them we sometimes meet in theories for kinematically
simpler models, see for instance [4], (§ 7, sect. 5e). As to the indeterminacies,
the notion of null state of stress for materials with internal structure plays
a special role. Its definition and peculiarities are discussed in section 3 and
the algebraic characterization of the null state of stress for each of the examined
cases is given in section 4.

We deal with the subject in a purely mechanical context. The constraints
considered here can be described in terms of a class of admissible configurations
according to the usual ideas about holonomic constraints. However, because
of the constraints, in many cases requirements of simmetry on the wrenching
gradients come into the picture from the properties of the differential calculus
and the ensuing restrictions on the fluxes elude the abstract approach to the
holonomic constraints given in [1],. We leave that view as far as this point i
concerned.

2 . Kinematics. Internal constraints

The description of an oriented continuous body may be done according
to the general lines traced by W. Noll [11] for classical bodies.

Let § be the three-dimentional Buclidean space and U be its translation
space endowed with the natural inner product. The structure of the oriented
body depends on the choice of a class ® of smooth mappings (displacements)
of &x{U} onto itself .

D = {p = (K, 6): K: § - § is a bijection, G: &§ —Inv {0},

on which we assume that suitable properties of closure are satisfied. Moreover
we suppose that all the isometries of & x{U} belong to D, and, by definition,
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we name isometries the pairs (K, G) such that

(i) K: &8 is an isometry for §,
(ii) 6: & — Orth* expresses the rotation associated with the rigid dis-
placement K. ‘

Then let $ and & be a material body and a three-dimentional vector
space. We say that B, = $ x{S} is a structured body of type ® and dimen-
sion n if there is given a non-empty class & of mappings (placements)

P=Pp=xT: x> IR I (S, V),
such that
(A), X are injective mappings onto n-dimensional open regions of §,

(A), Z = Doy, for some p,e P (2.

We notice that, from (A),, ® defines all the admissible placements of 3B,
whenever some reference placement p, is given. Thus the choice of © has a
constibutive character and the assumptions that ® is closed and contains all
the isometries guarantee to it a requirement of objectivity.

From the definition, the elements of $, (material points of 3B,) are the
pairs (X, &), where X ¢ B, so that B, consists of a body B to every point
of which a three-dimentional affine body represented by & is attached.
According to Noll's idea, when the class & is prescribed we can define the
tangent space 7y at X and describe, approximately, the material points
around X by vxx{&} (material neighborhood of (X, &)). For any placement
p = (X, T), then, a local placement of X consists of the triplets (VX/x, I'/y,
VI'/z), where VX and VI' stand for the linear mappings from 7, into U and
Inv (&, V), respectively, that approximate X and I' around X.

For every placement p = (X, I'), we can endow B, with a metric strue-
ture by transporting the metrics of § onto % and, for each X, the inner pro-
duct of U onto S by means of the linear mapping I'/y. More structure is
added by thinking of configurations as elements of & modulo the isometries
of ©. This assumption is basic in the theory of the structured bodies. In faet,
it implies that the images VX/¢(7,) and T'/x(®) in U are solidal in all the

(*) By bop we mean the pair (K(X(-)), G(X(+)) I'(-)). An analogous definition holds
for the composition product between elements of ® to which the notion of closure for ®
makes reference.
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placements corresponding to the same configuration and brings into the theory
that solidification of B, (see [1],) which is the more or less remote origin of the
moment of momentum equation in the various approaches.

In the following we suppose that a reference placement P, = (X, I is
given and denote by X the position of X in j,. Accordingly, any placement
p is described by a displacement field b = (K, &) and the local placements
by the triplets y = (F, G, VG), where F = ¢K/0X is the macro-deformation
gradient, G is the micro-deformation and VG = 96[0 X is the micro-deforma-
tion gradient. We call the triplet a site.

We suppose that a class & of right - differentiable functions from the
reals R into © (processes) is given. That class is assumed to be closed with
respect to suitable operations of composition and to time translations and its
section at any time 1€ R is ©. We do not dwell upon a more detailed defini-
tion of these properties because they can be easily obtained by adapting to
this case the gemeral frame of [6]. Confining ourselves to their mechanieal
meaning, we notice that they assure in particular that

(i) combining pieces of processes gives still a process,
(ii) the kinematical feature of the body is time-independent,
(iii) all the admissible placements may be reached at any time .

We call flux a triplet 1 = (FF"I, CG—I, grad (éG—l)T), where the time deri-
vatives of F and G are evaluated for some process in & (3). Clearly

y e Lin (¥, 7) xInv (V) xLin (¥, Lin (U, V),
AeLin (¥, 7") xLin (U, V) xLin (¥, Lin (U, V)) =4,

where ¥", ¥, are the images of the tangent space at X in the present and
reference placements, respectively. & is constrained if there is some site 7
such that the flum-cross section Ao(P)= {A = P(0): p € P, p(0)= p} is different
from A (4). Then, the internal agencies are specified by constitutive equations

to within reactions T, Z, H that must satisfy the condition

2.1) (T, — T — Z7, H) e AL (y(®))

(®) Capriz-Podio Guidugli use the symbols V = FF- (velocity gradient) and
W = GG (wrenching). So we do in the following.

(4) Because of the assumptions on &, the fluw cross section does not depend on the
time and we can choose the cross section at the time ¢ = 0. A, may differ from 4
because of the restrictions either on ® (holonomic constraints) or directly on the class .
The cases where the restrictions on 2 do not come from restrictions on ® correspond
to the anholonomic constraints. Here we deal with holonomic constraints.
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at any time ¢. Once one has the algebraic characterization of A7, it is possible
to eliminate the reactions from the balance equations and obtain a simpler
theory where only the determined part of the internal agencies are present.

3 - Equations of balance

In addition to the kinematical feature of &, certain inertial and mechanical
quantities and their balances are to be specified in order to complete the
description of the oriented body.

Borrowing symbols and equations from [1];, we assume that two measure
of inertia-mass and microinertia are given whose densities, p € Rt and ok
€ Bym (V), evolve according to

(3.1) ¢ =— pdivx, I=2sym (IW7) .

Furthermore, we assume that the mechanical balance is expressed by the
field equations

(3.2) ox=0b+divT, o8 —WS)= gL+ divH+T7+Z, Z=27,

where S = IW? and be U and L e Lin (V) are the body forces and genera-
lized couples, and by the boundary conditions

(3.3) Tn =%, Hn =m,

where n is the outer normal and T e U, m € Lin (U) are the contact force
and generalized couple per unit deformed area.

T, H, Z are the internal agencies of the director theories. For a more
detailed explanation of these and of the balance equations the reader is sent
to [1];. We only point out a difference. As we refer to n-dimensional bodies
embedded in the Kuclidean space, here T and H act upon unit vectors n
belonging to ¥"c V. Then, in (3.2),,the same symbol is used for the Cauchy
stress T e Lin (¥, V) and its trivial extension to Lin (V) and, (in (3.2).,
the operator {div} is defined so as the divergence theorem to hold, see [7].

With this understood, the balance equations are formally the same what-
ever the dimensions of &, are. In particular, the power of the internal agen-
cies in the kinetic energy theorem is defined by

(3.4) 06 =T-V— (T + Z)-W -+ H-grad W (5)

that enlightens the orthogonality requirement (2.1).

(®) From now on dots stand for the inner products.
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Remark 1. The formulation of new balance equations in theories of
structured media is needed to account for the major kinematical structure of
the model and is the most subtle point in principle. In [1};, (3.2),, ave directly
suggested by analogy with the study of an affine system of mass points.
(3.2), is shown to have the usual form of a momentum balance. As in other
approaches to the subject, the most distinctive point of the theory concerns
the moment of momentum balance. Indeed, (3.2), generates a moment of
momentum equation. Formally it is a constitutive assumption about the internal
agencies, being similar, in this respect, to the constitutive axioms added to
the momentum balance in theories for simpler models, i.e. the third law in
Newton’s Mechanics and the symmetry of the Cauchy’s stress in Confinuum
Mechanics. From a comparison with Toupin’s theory [12], where it is possible,
(8.2), turns out to be equivalent to his assumption of Galilean invariance of
the strain energy. Then, in some sense, it introduces into the theory a par-
ticular notion of observer and frame indifference in a form that is consistent
with the kinematical notion of configuration given in section 2.

Remark 2. The equations (3.3) clear the meaning of the tensors T and H:
they deseribe the contact forces and generalized couples through any given
surface in the body (°). When we consider constrained materials, however,
a queer ambiguity may be left in the solution of the boundary value problem.
In fact, associated to reactions, there might well exist fields (Ty, Z,, H,) which
constitute a null stress state, i.e. such that

(3.5) Ay T, =0,  Zo+ T +divH,=0,  Z,eSym,

and satisfy homogeneous boundary conditions.
The equations (3.5) arve equivalent to the conditions

(3.5) fTom =0, [xATon - skew (Hyn) = 0,

where § is the boundary of any given part of $. As in the theory the term
skew (Hyn) corresponds to the usual couple stresses, (3.5)" means that the
stresses and couple stresses associated with null stress fields are equipollent
to zero. Then, for the same data the boundary value problem exhibits several
solutions all of which correspond to equipollent distributions of couples and

{8) The interpretation of Z is more concealed and requires us to regard the discrete
model whence the continuum theory is derived.
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forces through any surface inside the body (7). This is not different, in essence,
from what happens in the theory of constrained classical continua but for
the peculiarity that here the notion of static equivalence involves stresses
and couple stresses at the same time.

4 - Special theories

The special cases follow from the general theory by suitable assumptions
on inertial measure, kinematics and constitutive equations of the body. The
following results will be useful.

Bl. (Embeddings). If U and 3 are subspaces of inner product spaces
and C an embedding J,: Lin (U, 3) — Lin (#, C) is defined by

(4.1) J,[A] = EAP,

for A € Lin (U, 3), where E: 3 — C is the immersion and P is some projec-
tion from s onto UW. Clearly, (4.1) is equivalent to require that [A] coincide
with A on U and vanish on some complementary subspace U: W@ U= A.
We will denote by the same symbol A and J,[A] when P is the orthogonal
projection onto L. We remark that, in this case, the following properties
hold J,[A]-J,[B] = A‘B, J,[A]F = J,[A”].

B2. (Splittings). Let st and € be given as under Bl. On dealing with
equations into Lin (#, C), it is sometimes expedient in the following to split
Lin (#, C) into the direct sum of subspaces. This may be performed in an
obvious way for any choice of complementary subspaces U, U, and 3, % in
/4 and C. In particular

(4.2) Lin (£, C) = Lin (W, 3)® Lin (U4, 3)@® Lin (W, 34) @ Lin (WL, 34)
and the factors are mutually orthogonal.

B3. (Material microstructures). In what follows, many of the eases concern
the material behaviour of the microstruture, which implies the respect of
relations of the form

(4.3) V=T(W).

(") This property was already noticed by Toupin and Grioli for their structured
model and find a convenient interpretation when their theories are viewed as con-
strained (see [11,).
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As we consider constraints in finite regions of %, we regard (4.3) both as a
restriction on the local values of V and W and on the fields V and W and
include restrictions on grad W, coming from the symmetry of gradV, in the
algebraic characterization of the constraint. This point of view is absent in
the abstraet scheme proposed in [1],.

In particular, in 4e, 4d and 4e F and G coincide along material surfaces
that spread all over the body. Accordingly, it is not difficult to show that the
wrenching gradient must satisfy

(4.4) [(grad Wi, )u]lv = [(grad W|,) v]u for Yu,ve?,
where #” is the tangent plane to the constraint surface at x.

4a. Materials of second grade. We suppose that B, is a three-dimensional
body where

I=0, D = {p: K is smooth, G = VK} .
Then the site cross-section I' and the fluxw cross-section A, are

I'={y=F6,V6); F=6G, [VGv]lw=[VGw]v, Vv, we U},
Ay = {1 = (V, W, grad W7), V = W e Lin (U, V),
[(grad W2) v]?w = [(grad WT)w]Tv, for Vv, we U} .
From (2.1) it follows
Z—=0 , (ﬁv)’—"w = — (ﬁw)Tv for Vv, we ¥,
which yield, infroducing the extra-stresses,
(4.5) T=T, Z=12Z;, H=H,tH,

where for any fixed coordinate system we have

(4.6) Hie = HY Hik — — Hb°
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If, for simplicity, we omit the generalized body couples from (3.2),, we
obtain

(4.7) T = — (div Hy)?— Zy— (div H)
and, from (3.2);, the pure balance equation
(4.8) oX — gb = div (— Zy— (div Hp)7) .

Thus, the constrained theory is determined to within an arbitrary null
stress state defined by T, = — (div Hy)* with H, satisfying (4.6), and Z, = 0,
but when it is formulated in terms of

(4.9) T,

li

— Z;— (div Hp)T,

it can be put into correspondence with Toupin’s theory of the hyperelastic
materials of second grade [12]. In particular, the comparison between the
definition (4.9) and the constitutive equation for the Cauchy stress in [12]
emphasizes that the symmetry of Z is equivalent to the Eueclidean invariance
of the strain energy function assumed by Toupin. This agrees with the inter-
pretation of the symmetry of Z given in section 3.

4b. Classical continuum. Classical continuum, theory trivially follows from
the previous one by assuming H, = 0 and identifying T, and — Z; in (4.9).

4c. Bricksen’s liguid crystals. Let B, be three-dimensional. We call B,
& liquid crystal of BEricksen’s type if the following statements apply.

(i) In the reference placement p, the microinertia has rank 1. We
denote by ¥ the non-trivial invariant subspace of I, at X.

(ii) There exists a family of disjoint smooth surfaces, spreading over
the body, such that ® = {b: & = VK on ¥}, where ¥, is the tangent plane
at the surface at X in b, (8).

(iii) At any X we have

(4.10), V=0, .

(8) In the scheme by Toupin, this assumption is equivalent to admit two material
directors.
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Note that the above definition implies that

(4.10), 5 ‘\f:“//fF Y =W, 07,

where ¥V =F(") = G(¥7), W, ,=XW"), Ws=GW,).

Because of the constraint, the fluxes are completely free but for the con-
ditions

(4.11), (V—~ Wiv=0, ve?
and by B3
(4.11), [(grad WT)u]Tv = [(grad WT)v]Tu for u,ve? .

By (4.2) and the orthogonality conditions (2.1), from (4.11),, it follows

T e Lin (7, ), Z=0,
(£.12)

He Lin (¢, Lin (U, 7)), (Hu)*v = — (Hv)"u for u,ve? .

The conditions (4.12), are equivalent to

(413) Hu=uH =0 for ue?™", (Hu)Tv = — (Hv)Tu, for u, ve UV,

from which we have

(4.14) div H € Lin (U, %), div [(div H)?] =0 () .

From (4.14), , H and the part of the reaction in the Cauchy stress, T

=— (div H)?, are a null stress that remains completely arbitrary in the con-
strained theory. Apart from this, however, no ambiguity is left in the theory.
Ericksen’s theory of the liquid cristals agrees with the present theory,

if one ignores T and H and assumes
(4.15) oL =on®d, H:=n® wy,

(®) (4.14), follows, by (4.13);,, from the chain
ﬁi}k,kti = (ﬁijkti),k—ﬁiikti,k = ﬁ”k (— B, + b ) =0

where ¢; is the unit normal to the consfraint surfaces and B; are the components of
their curvature tensor with respect to some coordinate system.
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where ne#”, d e U and w; € Lin (U, V) stand, respectively, for the director
and the generalized body- and surface-forces in [2].

As a matter of fact, the evolution law of micro-inertia (3.1), is equivalent
to assume I = GI,G7, and requires that

ol=opn®n, Q(é-—-WS) = gI(W'ﬂ—%—V‘i’)T:Qvn@ﬁ,

where 9 = 0 and n = Gn, for some given n,e#",.
Then, on decomposing (3.2), aceording to Lin (U, ¥ o) @ Lin (V, ¥7), we
have

T2 4 Py [T} + Z; + (grad m)w?] = 0,
(4.16)
(L= P )[T; + Zz + (grad n)wi] + n@ divwe + on®d = gyn® 1,

where P, is the projection onto ¥~ which performs the decomposition. The
first equation furnishes the reaction T and the second one corresponds to the
micromomentum balance (see [2], eq. (34)) if we pus

(4.17) n@r = (1— P,)[Zy 4 T} 4 (grad n)w?].

Finally, from (4.17), (4.16), and (3.2); we have

(4.18) — Zy= (T 4- Tp)” + (grad m)wi — n®r e Sym ,

that is just the moment of momentum balance in Bricksen’s paper ([2], eq. (42)).

4d. Cosserat surfaces. P is a surface and ¥~ o is a tangent plane at X in
the reference placement. The same formulae and conclusions of the above
case hold but for few differences due to the dimensions of B. Because of the
dimensions of B, here we have T e Lin (7", V) and H e Lin (7, Lin (U, U))
that imply from (4.12): Ty = 0, wye Lin (¥, V) and the conditions (4.14)
for H. However, the eqs. (4.16), and (4.18) are unchahged and can be com-
pared with the eqs. (3.20) and (3.24) of the Cosserat surface theory [10], with
some obvious correspondences of notations.

4e. Classical theory of shells. The Kirchhoff-Love theory of shells is ob-
tained by adding to the inertial and kinematical assumptions which charac-
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terize Cosserat surfaces, the following prescriptions
i) Ho=77,
(i) D={: 6=VK on ¥, 676G =1 on 77}
The definition of ® assures not only that G(¥ )= F(¥") = ¥#7, as in the
case 4d., but further that G(¥7F) = ¥
Moreover, it is equivalent to the following conditions on V and W

(4.19) V—-W=0 on?, WI4LW=0 on ¥+,

(4.19), implies the respect of the symmetry conditions (4.4). By differentia-
tion, from (4.19), we have also

(4.20) ngradWZelin (¥, ¥), ngrad W= — ngrad W -- (W7 - W)B

where n is the unit normal and B is the curvature tensor of the surface. Then,
if we split the reaction hyperstress according to the orthogonal decomposition

Lin (¥, Lin (U, 7)) @ Lin (¥, Lin (¥4, ¥4 @ Lin (¥, Lin (", ¥"4))

and denote its components, 1espectlvely, by H n® M and n& M from
(2.1) we have

4.21)  T-(V— W)— Z7-W + H-grad W7 — M, (n grad W)

+ M. (W2 - W)B =

for every (V, W, grad W7) satisfying (4.4), (4.19) and (4.20).
It follows that the reaction stresses are such that

(4.22) H belongs to the subspace defined by (4.12);,
(4.23) M, eLin (¥, ¥™4),
(4.24) M. e Skew (¥)

(4.25) T e Lin (¥, V).
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It 1s interesting to nofice that besides the ambwmty left by the reac-
tions H the themy is undetermined as to the term n® M. The indetermi-

nation (4.24) in B, was noticed in [4] where it was simply suggested to putb
the skewsymmetric part of the tangential component of the couple stresses
equal to zero.

Here we properly interpret this indeterminacy as a reaction. Associated
with M., there is a null stress given by

T, = div (n@® M), Hy,=n® M.,
(4.26) B B
Z,= — div (n®@M;) — [div (n® M)]"

In fact, these fields satisfy the balance equations (3.5). (3.5)s,, trivially
hold and (3.5), follows from

le (n® ﬂ[-{) _ Jl/[r 18 n@ ax + JﬁfaﬂB%ay® an y
and

div (div (@ My)) = M g0 + (7., B, + H*, B a,
-+ ]VTf“ﬁBﬁ”(u ay + jﬂf‘ﬂB”ﬁBwn

where the right hand side term vanishes because of the skewsymmetly of M,
and taking account of (A.2.39) of [10] and Codazzi equations.

Here, as is customary in shell theory [10], we have used an intrinsic ref-
erence {as, o = 1,2 and n | a,} and denoted by ¢|) the surface covariant
derivative. B”, is for the curvature tensor.

The indeterminacy on N, reflects upon all the components of the internal
agencies. If one cancels M, in the present theory and accordingly denotes
the extra hyperstress by n® Mz, with M, e Sym (¥7), the classical shell theory
is obtained. As Z is symmetric, it follows from (4.21) that

(4.27) —“izn@‘ﬁjui@n, Z;eSym (¥),

where the reaction m stands for the intrinsic director couple in the theory
by Green-Naghdi-Wainwright. It follows further from (3.2), that

(4.28) ovn = od 4 divMy+ divM, —m, T2+ P, Z + Z;— BM, — BMZ = 0

where P, is now the orthogonal projection onto the tangent plane 7.
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The equations (4.28),, can be given the form

T = m* 4+ * B,*, T = 70 1 M B
(4.29) Mt = — gvi? -+ pd® -+ B,g M 4 F*,,

M= — gyn® + od* -+ My¥y— M B, .

(4.29), ,, allows us to deduce the null stress field as a function of ™ .- Equa-
tions (4.29) coincide with egs. (7.9), (7.10), (7.16) and (7.17) of [4]; when
(4.29) are inserted in (3.2), we arrive at

T y— M, B — o(d — ) B 4 ob* = 0a”,
(4.30)

I'I,E“ﬁ“iac + BaﬁT“ﬁ + Q(da—" In)|oa + Qba = Qa}3 .

These balance equations are the same as equations (7.13) and (7.14) of [4].
It is important to notice that the reactions T* in (4.30) can be eliminated
by means of (4.29),.
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Sommario

St deducono alcune teorie speciali per materiali con struttura riguardando i modells

considerati come vincolati. S¢ discutono anche le indeterminaziont nello stato di tensione
dovute ai vincoli.
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